1887

Abstract

The saprophytic actinobacterium A3(2) requires oxygen for filamentous growth. Surprisingly, the bacterium also synthesizes three active respiratory nitrate reductases (Nar), which are believed to contribute to survival, or general fitness, of the bacterium in soil when oxygen becomes limiting. In this study, we analysed Nar3 and showed that activity of the enzyme is restricted to stationary-phase mycelium of . Phosphate limitation was shown to be necessary for induction of enzyme synthesis. Nar3 synthesis was inhibited by inclusion of 20 mM phosphate in a defined ‘switch assay’ in which highly dispersed mycelium from exponentially growing cultures was shifted to neutral MOPS-glucose buffer to induce Nar3 synthesis and activity. Quantitative assessment of transcripts revealed a 30-fold induction of gene expression in stationary-phase mycelium. Transcript levels in stationary-phase mycelium incubated with phosphate were reduced by a little more than twofold, suggesting that the negative influence of phosphate on Nar3 synthesis was mainly at the post-transcriptional level. Furthermore, it was demonstrated that oxygen limitation was necessary to induce high levels of Nar3 activity. However, an abrupt shift from aerobic to anaerobic conditions prevented appearance of Nar3 activity. This suggests that the bacterium regulates Nar3 synthesis in response to the energy status of the mycelium. Nitrate had little impact on regulation of the Nar3 level. Together, these data identify Nar3 as a stationary-phase nitrate reductase in and demonstrate that enzyme synthesis is induced in response to both phosphate limitation and hypoxia.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000349
2016-09-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1689.html?itemId=/content/journal/micro/10.1099/mic.0.000349&mimeType=html&fmt=ahah

References

  1. Azoulay E., Puig J., Pichinoty F.. 1967; Alteration of respiratory particles by mutation in Escherichia coli K 12. Biochem Biophys Res Commun27:270–274 [CrossRef][PubMed]
    [Google Scholar]
  2. Bentley S. D., Chater K. F., Cerdeño-Tárraga A. M., Challis G. L., Thomson N. R., James K. D., Harris D. E., Quail M. A., Kieser H. et al. 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature417:141–147 [CrossRef][PubMed]
    [Google Scholar]
  3. Bott M., Niebisch A.. 2003; The respiratory chain of Corynebacterium glutamicum . J Biotechnol104:129–153 [CrossRef][PubMed]
    [Google Scholar]
  4. Cook G. M., Berney M., Gebhard S., Heinemann M., Cox R. A., Danilchanka O., Niederweis M.. 2009; Physiology of mycobacteria. Adv Microbial Physiol55:81–319[CrossRef]
    [Google Scholar]
  5. Elliot M. A., Flärdh K.. 2012; Streptomycete spores. In Encyclopedia of Life Sciences (ELS) , pp.1–9 Chichester: John Wiley & Sons;
    [Google Scholar]
  6. Fischer M., Alderson J., van Keulen G., White J., Sawers R. G.. 2010; The obligate aerobe Streptomyces coelicolor A3(2) synthesizes three active respiratory nitrate reductases. Microbiology156:3166–3179 [CrossRef][PubMed]
    [Google Scholar]
  7. Fischer M., Sawers R. G.. 2013; A universally applicable and rapid method for measuring the growth of Streptomyces and other filamentous microorganisms by methylene blue adsorption-desorption. Appl Environ Microbiol79:4499–4502 [CrossRef][PubMed]
    [Google Scholar]
  8. Fischer M., Falke D., Sawers R. G.. 2013; A respiratory nitrate reductase active exclusively in resting spores of the obligate aerobe Streptomyces coelicolor A3(2). Mol Microbiol89:1259–1273 [CrossRef][PubMed]
    [Google Scholar]
  9. Fischer M., Falke D., Pawlik T., Sawers R. G.. 2014; Oxygen-dependent control of respiratory nitrate reduction in mycelium of Streptomyces coelicolor A3(2). J Bacteriol196:4152–4162 [CrossRef][PubMed]
    [Google Scholar]
  10. Hodgson D. A.. 2000; Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microbial Physiol42:47–238[CrossRef]
    [Google Scholar]
  11. Hoffmann T., Frankenberg N., Marino M., Jahn D.. 1998; Ammonification in Bacillus subtilis utilizing dissimilatory nitrite reductase is dependent on resDE . J Bacteriol180:186–189[PubMed]
    [Google Scholar]
  12. Hopwood D. A.. 2006; Soil to genomics: the Streptomyces chromosome. Annu Rev Genet40:1–23 [CrossRef][PubMed]
    [Google Scholar]
  13. Jones R. W., Garland P. B.. 1977; Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli. Effects of permeability barriers imposed by the cytoplasmic membrane. Biochem J164:199–211 [CrossRef][PubMed]
    [Google Scholar]
  14. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. 2000; Practical Streptomyces Genetics Norwich, UK: John Innes Foundation;
    [Google Scholar]
  15. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  16. Lowry O., Rosebrough N., Farr A., Randall R.. 1951; Protein measurement with the folin phenol reagent. J Biol Chem193:265–275[PubMed]
    [Google Scholar]
  17. Nieselt K., Battke F., Herbig A., Bruheim P., Wentzel A., Jakobsen O. M., Sletta H., Alam M. T., Merlo M. E. et al. 2010; The dynamic architecture of the metabolic switch in Streptomyces coelicolor . BMC Genomics11:10 [CrossRef][PubMed]
    [Google Scholar]
  18. Nishimura T., Vertès A. A., Shinoda Y., Inui M., Yukawa H.. 2007; Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol75:889–897 [CrossRef][PubMed]
    [Google Scholar]
  19. Rodríguez-García A., Sola-Landa A., Apel K., Santos-Beneit F., Martín J. F.. 2009; Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnII and amtB expression by the response regulator PhoP. Nucleic Acids Res37:3230–3242 [CrossRef][PubMed]
    [Google Scholar]
  20. Sawers R. G., Falke D., Fischer M.. 2016; Oxygen and nitrate respiration in Stretopmyces coelicolor A3(2). Adv Microb Physiol68:1–40[CrossRef]
    [Google Scholar]
  21. Schuhmacher T., Löffler M., Hurler T., Takors R.. 2014; Phosphate limited fed-batch processes: impact on carbon usage and energy metabolism in Escherichia coli . J Biotechnol190:96–104 [CrossRef][PubMed]
    [Google Scholar]
  22. Slater H., Crow M., Everson L., Salmond G. P.. 2003; Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol47:303–320 [CrossRef][PubMed]
    [Google Scholar]
  23. Sohaskey C. D., Wayne L. G.. 2003; Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis . J Bacteriol185:7247–7256 [CrossRef][PubMed]
    [Google Scholar]
  24. Soliveri J., Brown K. L., Buttner M. J., Chater K. F.. 1992; Two promoters for the whiB sporulation gene of Streptomyces coelicolor A3(2) and their activities in relation to development. J Bacteriol174:6215–6220[PubMed]
    [Google Scholar]
  25. Stewart V.. 2003; Nitrate- and nitrite-responsive sensors NarX and NarQ of proteobacteria. Biochem Soc Trans31:1–10 [CrossRef]
    [Google Scholar]
  26. Takeno S., Ohnishi J., Komatsu T., Masaki T., Sen K., Ikeda M.. 2007; Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum . Appl Microbiol Biotechnol75:1173–1182 [CrossRef][PubMed]
    [Google Scholar]
  27. Thomas L., Hodgson D. A., Wentzel A., Nieselt K., Ellingsen T. E., Moore J., Morrissey E. R., Legaie R. STREAM Consortium et al. 2012; Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture. Mol Cell Proteomics11:M111.013797 [CrossRef][PubMed]
    [Google Scholar]
  28. Towbin H., Staehelin T., Gordon J.. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A76:4350–4354 [CrossRef][PubMed]
    [Google Scholar]
  29. van Keulen G., Jonkers H. M., Claessen D., Dijkhuizen L., Wösten H. A.. 2003; Differentiation and anaerobiosis in standing liquid cultures of Streptomyces coelicolor . J Bacteriol185:1455–1458 [CrossRef][PubMed]
    [Google Scholar]
  30. van Keulen G., Alderson J., White J., Sawers R. G.. 2005; Nitrate respiration in the actinomycete Streptomyces coelicolor . Biochem Soc Trans33:210–212 [CrossRef][PubMed]
    [Google Scholar]
  31. van Keulen G., Alderson J., White J., Sawers R. G.. 2007; The obligate aerobic actinomycete Streptomyces coelicolor A3(2) survives extended periods of anaerobic stress. Environ Microbiol9:3143–3149 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000349
Loading
/content/journal/micro/10.1099/mic.0.000349
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error