1887

Abstract

is a well-known polyunsaturated fatty acid-producing oleaginous fungus. Analysis of the genome suggests that there is a putative dihydrofolate reductase (DHFR) gene playing a role in the salvage pathway of tetrahydrobiopterin (BH), which has never been explored in fungi before. DHFR is the sole source of tetrahydrofolate and plays a key role in maintaining BH levels. Transcriptome data analysis revealed that DHFR was up-regulated by nitrogen exhaustion, when starts to accumulate lipids. Significant changes were found in the fatty acid profile in grown on medium containing DHFR inhibitors compared to grown on medium without inhibitors. To explore the role of DHFR in folate/BH metabolism and its relationship to lipid biosynthesis, we expressed heterologously the gene encoding DHFR from in and we purified the recombinant enzyme to homogeneity. The enzymatic activity was investigated by liquid chromatography and MS and VIS–UV spectroscopy. The kinetic parameters and the effects of temperature, pH, metal ions and inhibitors on the activity of DHFR were also investigated. The transcript level of cytosolic NADPH-producing gene involved in folate metabolism is down-regulated by DHFR inhibitors, which highlights the functional significance of DHFR in lipid biosynthesis. The relationship between DHFR and lipid metabolism is thus of major importance, and folate metabolism may be an alternative NADPH source in fatty acid synthesis. To our knowledge, this study is the first to report the comprehensive characterization of a BHsalvage pathway in a fungus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000345
2016-09-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1544.html?itemId=/content/journal/micro/10.1099/mic.0.000345&mimeType=html&fmt=ahah

References

  1. Abelson H. T., Spector R., Gorka C., Fosburg M.. 1978; Kinetics of tetrahydrobiopterin synthesis by rabbit brain dihydrofolate reductase. Biochem J171:267–268 [CrossRef][PubMed]
    [Google Scholar]
  2. Baccanari D. P., Tansik R. L., Joyner S. S., Fling M. E., Smith P. L., Freisheim J. H.. 1989; Characterization of Candida albicans dihydrofolate reductase. J Biol Chem264:1100–1107[PubMed]
    [Google Scholar]
  3. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  4. Chen H., Hao G., Wang L., Wang H., Gu Z., Liu L., Zhang H., Chen W., Chen Y. Q.. 2015; Identification of a critical determinant that enables efficient fatty acid synthesis in oleaginous fungi. Sci Rep5:11247 [CrossRef][PubMed]
    [Google Scholar]
  5. Crabtree M. J., Tatham A. L., Hale A. B., Alp N. J., Channon K. M.. 2009; Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways. J Biol Chem284:28128–28136 [CrossRef][PubMed]
    [Google Scholar]
  6. Daly S., Mastromei G., Yacoub A., Lorenzetti R.. 1994; Sequence of a dihydrofolate reductase-encoding gene from Candida albicans . Gene147:115–118 [CrossRef][PubMed]
    [Google Scholar]
  7. Fan J., Ye J., Kamphorst J. J., Shlomi T., Thompson C. B., Rabinowitz J. D.. 2014; Quantitative flux analysis reveals folate-dependent NADPH production. Nature510:298–302 [CrossRef][PubMed]
    [Google Scholar]
  8. Forrest H. S., Van Baalen C.. 1970; Microbiology of unconjugated pteridines. Annu Rev Microbiol24:91–108 [CrossRef][PubMed]
    [Google Scholar]
  9. Giovannini M., Biasucci G., Agostoni C., Luotti D., Riva E.. 1995; Lipid status and fatty acid metabolism in phenylketonuria. J Inherit Metab Dis18:265–272 [CrossRef][PubMed]
    [Google Scholar]
  10. He A., Rosazza J. P.. 2003; GTP cyclohydrolase I: purification, characterization, and effects of inhibition on nitric oxide synthase in nocardia species. Appl Environ Microbiol69:7507–7513 [CrossRef][PubMed]
    [Google Scholar]
  11. Hillcoat B. L., Nixon P. F., Blakley R. L.. 1967; Effect of substrate decomposition on the spectrophotometric assay of dihydrofolate reductase. Anal Biochem21:178–189 [CrossRef][PubMed]
    [Google Scholar]
  12. Kaufman S.. 1967; Pteridine cofactors. Annu Rev Biochem36:171–184 [CrossRef][PubMed]
    [Google Scholar]
  13. Kaufman S.. 1993; New tetrahydrobiopterin-dependent systems. Annu Rev Nutr13:261–286 [CrossRef][PubMed]
    [Google Scholar]
  14. Kendrick A., Ratledge C.. 1992; Desaturation of polyunsaturated fatty acids in Mucor circinelloides and the involvement of a novel membrane-bound malic enzyme. Eur J Biochem209:667–673 [CrossRef][PubMed]
    [Google Scholar]
  15. Lagosky P. A., Taylor G. R., Haynes R. H.. 1987; Molecular characterization of the Saccharomyces cerevisiae dihydrofolate reductase gene (DFR1). Nucleic Acids Res15:10355–10371 [CrossRef][PubMed]
    [Google Scholar]
  16. Leartsakulpanich U., Imwong M., Pukrittayakamee S., White N. J., Snounou G., Sirawaraporn W., Yuthavong Y.. 2002; Molecular characterization of dihydrofolate reductase in relation to antifolate resistance in Plasmodium vivax . Mol Biochem Parasitol119:63–73 [CrossRef][PubMed]
    [Google Scholar]
  17. Ledley F. D., Grenett H. E., Woo S. L.. 1987; Biochemical characterization of recombinant human phenylalanine hydroxylase produced in Escherichia coli . J Biol Chem262:2228–2233[PubMed]
    [Google Scholar]
  18. Liu C. T., Hanoian P., French J. B., Pringle T. H., Hammes-Schiffer S., Benkovic S. J.. 2013; Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans. Proc Natl Acad Sci U S A110:10159–10164 [CrossRef][PubMed]
    [Google Scholar]
  19. Liu J., Bolstad D. B., Smith A. E., Priestley N. D., Wright D. L., Anderson A. C.. 2008; Structure-guided development of efficacious antifungal agents targeting Candida glabrata dihydrofolate reductase. Chem Biol15:990–996 [CrossRef]
    [Google Scholar]
  20. Mortazavi A., Williams B. A., McCue K., Schaeffer L., Wold B.. 2008; Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods5:621–628 [CrossRef][PubMed]
    [Google Scholar]
  21. Moseley K., Koch R., Moser A. B.. 2002; Lipid status and long-chain polyunsaturated fatty acid concentrations in adults and adolescents with phenylketonuria on phenylalanine-restricted diet. J Inherit Metab Dis25:56–64[PubMed][CrossRef]
    [Google Scholar]
  22. Nagatsu T., Ichinose H.. 1999; Regulation of pteridine-requiring enzymes by the cofactor tetrahydrobiopterin. Mol Neurobiol19:79–96 [CrossRef][PubMed]
    [Google Scholar]
  23. Nilsson R., Jain M., Madhusudhan N., Sheppard N. G., Strittmatter L., Kampf C., Huang J., Asplund A., Mootha V. K.. 2014; Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun5:3128 [CrossRef][PubMed]
    [Google Scholar]
  24. Paulsen J. L., Bendel S. D., Anderson A. C.. 2011; Crystal structures of Candida albicans dihydrofolate reductase bound to propargyl-linked antifolates reveal the flexibility of active site loop residues critical for ligand potency and selectivity. Chem Biol Drug Des78:505–512 [CrossRef][PubMed]
    [Google Scholar]
  25. Rous S.. 1971; The origin of hydrogen in fatty acid synthesis. Adv Lipid Res9:73–118[PubMed][CrossRef]
    [Google Scholar]
  26. Rudzite V., Jurika E., Baier-Bitterlich G., Widner B., Reibnegger G., Fuchs D.. 1998; Pteridines and lipid metabolism. Pteridines9:103–112 [CrossRef]
    [Google Scholar]
  27. Sakuradani E., Ando A., Ogawa J., Shimizu S.. 2009; Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Appl Microbiol Biotechnol84:1–10 [CrossRef][PubMed]
    [Google Scholar]
  28. Schnell J. R., Dyson H. J., Wright P. E.. 2004; Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu Rev Biophys Biomol Struct33:119–140 [CrossRef][PubMed]
    [Google Scholar]
  29. Sirawaraporn W., Cao M., Santi D. V., Edman J. C.. 1993a; Cloning, expression, and characterization of Cryptococcus neoformans dihydrofolate reductase. J Biol Chem268:8888–8892
    [Google Scholar]
  30. Sirawaraporn W., Prapunwattana P., Sirawaraporn R., Yuthavong Y., Santi D. V.. 1993b; The dihydrofolate reductase domain of plasmodium falciparum thymidylate synthase-dihydrofolate reductase. Gene synthesis, expression, and anti-folate-resistant mutants. J Biol Chem268:21637–21644
    [Google Scholar]
  31. Trapnell C., Williams B. A., Pertea G., Mortazavi A., Kwan G., Van Baren M. J., Salzberg S. L., Wold B. J., Pachter L.. 2010; Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol28:511–515 [CrossRef][PubMed]
    [Google Scholar]
  32. Wang H., Chen H., Hao G., Yang B., Feng Y., Wang Y., Feng L., Zhao J., Song Y. et al. 2013; Role of the phenylalanine-hydroxylating system in aromatic substance degradation and lipid metabolism in the oleaginous fungus Mortierella alpina . Appl Environ Microbiol79:3225–3233 [CrossRef][PubMed]
    [Google Scholar]
  33. Wang H., Yang B., Hao G., Feng Y., Chen H., Feng L., Zhao J., Zhang H., Chen Y. Q. et al. 2011a; Biochemical characterization of the tetrahydrobiopterin synthesis pathway in the oleaginous fungus Mortierella alpina . Microbiol157:3059–3070 [CrossRef][PubMed]
    [Google Scholar]
  34. Wang L., Chen W., Feng Y., Ren Y., Gu Z., Chen H., Wang H., Thomas M. J., Zhang B. et al. 2011b; Genome characterization of the oleaginous fungus Mortierella alpina . PLoS ONE6:e28319 [CrossRef]
    [Google Scholar]
  35. Wang H., Zhang C., Chen H., Yang Q., Zhou X., Gu Z., Zhang H., Chen W., Chen Y. Q.. 2016; Characterization of a fungal L-fucokinase involved in Mortierella alpina GDP-L-fucose salvage pathway. Glycobiologycww032 [CrossRef][PubMed]
    [Google Scholar]
  36. Werner-Felmayer G., Golderer G., Werner E. R.. 2002; Tetrahydrobiopterin biosynthesis, utilization and pharmacological effects. Curr Drug Metab3:159–173 [CrossRef][PubMed]
    [Google Scholar]
  37. White E. L., Ross L. J., Cunningham A., Escuyer V.. 2004; Cloning, expression, and characterization of Mycobacterium tuberculosis dihydrofolate reductase. FEMS Microbiol Lett232:101–105 [CrossRef][PubMed]
    [Google Scholar]
  38. Wright D. B., Banks D. D., Lohman J. R., Hilsenbeck J. L., Gloss L. M.. 2002; The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases. J Mol Biol323:327–344 [CrossRef][PubMed]
    [Google Scholar]
  39. Wynn J. P., bin Abdul Hamid A., Ratledge C.. 1999; The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology145:1911–1917 [CrossRef][PubMed]
    [Google Scholar]
  40. Yu C. S., Chen Y. C., Lu C. H., Hwang J. K.. 2006; Prediction of protein subcellular localization. Proteins64:643–651 [CrossRef][PubMed]
    [Google Scholar]
  41. Zhang Y., Adams I. P., Ratledge C.. 2007; Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology153:2013–2025 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000345
Loading
/content/journal/micro/10.1099/mic.0.000345
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error