1887

Abstract

Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) are major human pathogens known to interact in a variety of disease settings, including airway infections in cystic fibrosis. We recently reported that clinical CF isolates of Pa inhibit the formation and growth of Af biofilms. Here, we report that the bacteriophage Pf4, produced by Pa, can inhibit the metabolic activity of Af biofilms. This phage-mediated inhibition was dose dependent, ablated by phage denaturation, and was more pronounced against preformed Af biofilm rather than biofilm formation. In contrast, planktonic conidial growth was unaffected. Two other phages, Pf1 and fd, did not inhibit Af, nor did supernatant from a Pa strain incapable of producing Pf4. Pf4, but not Pf1, attaches to Af hyphae in an avid and prolonged manner, suggesting that Pf4-mediated inhibition of Af may occur at the biofilm surface. We show that Pf4 binds iron, thus denying Af a crucial resource. Consistent with this, the inhibition of Af metabolism by Pf4 could be overcome with supplemental ferric iron, with preformed biofilm more resistant to reversal. To our knowledge, this is the first report of a bacterium producing a phage that inhibits the growth of a fungus and the first description of a phage behaving as an iron chelator in a biological system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000344
2016-09-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1583.html?itemId=/content/journal/micro/10.1099/mic.0.000344&mimeType=html&fmt=ahah

References

  1. Amin R. , Dupuis A. , Aaron S. D. , Ratjen F. . ( 2010;). The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. . Chest 137: 171–176. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baxter C. G. , Rautemaa R. , Jones A. M. , Webb A. K. , Bull M. , Mahenthiralingam E. , Denning D. W. . ( 2013;). Intravenous antibiotics reduce the presence of Aspergillus in adult cystic fibrosis sputum. . Thorax 68: 652–657. [CrossRef] [PubMed]
    [Google Scholar]
  3. Blyth W. . ( 1971;). Modifications in the ultrastructure of Aspergillus fumigatus due to the presence of living cells of Pseudomonas aeruginosa . . Sabouraudia 9: 283–286. [CrossRef] [PubMed]
    [Google Scholar]
  4. Botha P. , Archer L. , Anderson R. L. , Lordan J. , Dark J. H. , Corris P. A. , Gould K. , Fisher A. J. . ( 2008;). Pseudomonas aeruginosa colonization of the allograft after lung transplantation and the risk of bronchiolitis obliterans syndrome. . Transplantation 85: 771–774. [CrossRef] [PubMed]
    [Google Scholar]
  5. Boulanger P. . ( 2009;). Purification of bacteriophages and SDS-PAGE analysis of phage structural proteins from ghost particles. . Methods Mol Biol 502: 227–238. [CrossRef] [PubMed]
    [Google Scholar]
  6. Briard B. , Bomme P. , Lechner B. E. , Mislin G. L. A. , Lair V. , Prévost M.-C. , Latgé J.-P. , Haas H. , Beauvais A. et al. ( 2015;). Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. . Sci Rep 5: 8220. [CrossRef]
    [Google Scholar]
  7. Cahill B. C. , Hibbs J. R. , Savik K. , Juni B. A. , Dosland B. M. , Edin-Stibbe C. , Hertz M. I . ( 1997;). Aspergillus airway colonization and invasive disease after lung transplantation. . Chest 112: 1160–1164.[CrossRef]
    [Google Scholar]
  8. Castang S. , Dove S. L. . ( 2012;). Basis for the essentiality of H-NS family members in Pseudomonas aeruginosa . . J Bacteriol 194: 5101–5109. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen Y. C. , Wu Y. T. , Wei Y. H. . ( 2015;). Depletion of mitoferrins leads to mitochondrial dysfunction and impairment of adipogenic differentiation in 3T3-L1 preadipocytes. . Free Radic Res 49: 1285–1295. [CrossRef] [PubMed]
    [Google Scholar]
  10. Clemons K. V. , Stevens D. A. . ( 2009;). Conventional or molecular measurement of Aspergillus load. . Med Mycol 47: S132–137. [CrossRef] [PubMed]
    [Google Scholar]
  11. Costerton J. W. , Stewart P. S. , Greenberg E. P. . ( 1999;). Bacterial biofilms: a common cause of persistent infections. . Science 284: 1318–1322. [CrossRef] [PubMed]
    [Google Scholar]
  12. Ferreira J. A. , Penner J. C. , Moss R. B. , Haagensen J. A. , Clemons K. V. , Spormann A. M. , Nazik H. , Cohen K. , Banaei N. et al. ( 2015;). Inhibition of Aspergillus fumigatus and its biofilm by Pseudomonas aeruginosa is dependent on the source, phenotype and growth conditions of the bacterium. . PLoS One 10: e0134692. [CrossRef] [PubMed]
    [Google Scholar]
  13. Fillaux J. , Brémont F. , Murris M. , Cassaing S. , Rittié J. L. , Tétu L. , Segonds C. , Abbal M. , Bieth E. et al. ( 2012;). Assessment of Aspergillus sensitization or persistent carriage as a factor in lung function impairment in cystic fibrosis patients. . Scand J Infect Dis 44: 842–847. [CrossRef] [PubMed]
    [Google Scholar]
  14. Finnan S. , Morrissey J. P. , O'Gara F. , Boyd E. F. . ( 2004;). Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. . J Clin Microbiol 42: 5783–5792. [CrossRef] [PubMed]
    [Google Scholar]
  15. Garantziotis S. , Palmer S. M. . ( 2009;). An unwelcome guest: Aspergillus colonization in lung transplantation and its association with bronchiolitis obliterans syndrome. . Am J Transplant 9: 1705–1706. [CrossRef] [PubMed]
    [Google Scholar]
  16. Geday M. A. , Kaminsky W. , Lewis J. G. , Glazer A. M. . ( 2000;). Images of absolute retardance L.Δn, using the rotating polariser method. . J Microsc 198: 1–9. [CrossRef] [PubMed]
    [Google Scholar]
  17. Govan J. R. , Deretic V. . ( 1996;). Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . . Microbiol Rev 60: 539–574.[PubMed]
    [Google Scholar]
  18. Hall-Stoodley L. , Stoodley P. . ( 2009;). Evolving concepts in biofilm infections. . Cell Microbiol 11: 1034–1043. [CrossRef] [PubMed]
    [Google Scholar]
  19. Hmelo L. R. , Borlee B. R. , Almblad H. , Love M. E. , Randall T. E. , Tseng B. S. , Lin C. , Irie Y. , Storek K. M. et al. ( 2015;). Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange. . Nat Protoc 10: 1820–1841. [CrossRef] [PubMed]
    [Google Scholar]
  20. Høiby N. , Ciofu O. , Bjarnsholt T. . ( 2010;). Pseudomonas aeruginosa biofilms in cystic fibrosis. . Future Microbiol 5: 1663–1674. [CrossRef] [PubMed]
    [Google Scholar]
  21. Jacobs M. A. , Alwood A. , Thaipisuttikul I. , Spencer D. , Haugen E. , Ernst S. , Will O. , Kaul R. , Raymond C. et al. ( 2003;). Comprehensive transposon mutant library of Pseudomonas aeruginosa . . Proc Natl Acad Sci U S A 100: 14339–14344. [CrossRef] [PubMed]
    [Google Scholar]
  22. Janmey P. A. , Slochower D. R. , Wang Y. H. , Wen Q. , Cebers A. . ( 2014;). Polyelectrolyte properties of filamentous biopolymers and their consequences in biological fluids. . Soft Matter 10: 1439–1449. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kakizaki I. , Kojima K. , Takagaki K. , Endo M. , Kannagi R. , Ito M. , Maruo Y. , Sato H. , Yasuda T. et al. ( 2004;). A novel mechanism for the inhibition of hyaluronan biosynthesis by 4-methylumbelliferone. . J Biol Chem 279: 33281–33289. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kaur S. , Singh S. . ( 2014;). Biofilm formation by Aspergillus fumigatus . . Med Mycol 52: 2–9. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kerr J. R. , Taylor G. W. , Rutman A. , Høiby N. , Cole P. J. , Wilson R. . ( 1999;). Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. . J Clin Pathol 52: 385–387. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kirov S. M. , Webb J. S. , O'may C. Y. , Reid D. W. , Woo J. K. , Rice S. A. , Kjelleberg S. . ( 2007;). Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. . Microbiology 153: 3264–3274. [CrossRef] [PubMed]
    [Google Scholar]
  27. Manavathu E. K. , Vager D. L. , Vazquez J. A. . ( 2014;). Development and antimicrobial susceptibility studies of in vitro monomicrobial and polymicrobial biofilm models with Aspergillus fumigatus and Pseudomonas aeruginosa . . BMC Microbiol 14: 53. [CrossRef] [PubMed]
    [Google Scholar]
  28. Mangan A. . ( 1969;). Interactions between some aural Aspergillus species and bacteria. . J Gen Microbiol 58: 261–266. [CrossRef] [PubMed]
    [Google Scholar]
  29. Manos J. , Arthur J. , Rose B. , Tingpej P. , Fung C. , Curtis M. , Webb J. S. , Hu H. , Kjelleberg S. et al. ( 2008;). Transcriptome analyses and biofilm-forming characteristics of a clonal Pseudomonas aeruginosa from the cystic fibrosis lung. . J Med Microbiol 57: 1454–1465. [CrossRef] [PubMed]
    [Google Scholar]
  30. Mathee K. , Narasimhan G. , Valdes C. , Qiu X. , Matewish J. M. , Koehrsen M. , Rokas A. , Yandava C. N. , Engels R. et al. ( 2008;). Dynamics of Pseudomonas aeruginosa genome evolution. . Proc Natl Acad Sci U S A 105: 3100–3105. [CrossRef] [PubMed]
    [Google Scholar]
  31. Nazik H. , Penner J. C. , Ferreira J. A. , Haagensen J. A. , Cohen K. , Spormann A. M. , Martinez M. , Chen V. , Hsu J. L. et al. ( 2015;). Effects of iron chelators on the formation and development of Aspergillus fumigatus biofilm. . Antimicrob Agents Chemother 59: 6514–6520. [CrossRef] [PubMed]
    [Google Scholar]
  32. Nicolai T. , Arleth S. , Spaeth A. , Bertele-Harms R. M. , Harms H. K. . ( 1990;). Correlation of IgE antibody titer to Aspergillus fumigatus with decreased lung function in cystic fibrosis. . Pediatr Pulmonol 8: 12–15. [CrossRef] [PubMed]
    [Google Scholar]
  33. Nunley D. R. , Ohori P. , Grgurich W. F. , Iacono A. T. , Williams P. A. , Keenan R. J. , Dauber J. H. . ( 1998;). Pulmonary aspergillosis in cystic fibrosis lung transplant recipients. . Chest 114: 1321–1329. [CrossRef] [PubMed]
    [Google Scholar]
  34. Platt M. D. , Schurr M. J. , Sauer K. , Vazquez G. , Kukavica-Ibrulj I. , Potvin E. , Levesque R. C. , Fedynak A. , Brinkman F. S. et al. ( 2008;). Proteomic, microarray, and signature-tagged mutagenesis analyses of anaerobic Pseudomonas aeruginosa at pH 6.5, likely representing chronic, late-stage cystic fibrosis airway conditions. . J Bacteriol 190: 2739–2758. [CrossRef] [PubMed]
    [Google Scholar]
  35. Rakonjac J. , Bennett N. J. , Spagnuolo J. , Gagic D. , Russel M. . ( 2011;). Filamentous bacteriophage: biology, phage display and nanotechnology applications. . Curr Issues Mol Biol 13: 51–76.[PubMed]
    [Google Scholar]
  36. Ramsey K. A. , Ranganathan S. , Park J. , Skoric B. , Adams A. M. , Simpson S. J. , Robins-Browne R. M. , Franklin P. J. , de Klerk N. H et al. ( 2014;). Early respiratory infection is associated with reduced spirometry in children with cystic fibrosis. . Am J Respir Crit Care Med 190: 1111–1116. [CrossRef] [PubMed]
    [Google Scholar]
  37. Reichhardt C. , Ferreira J. A. , Joubert L. M. , Clemons K. V. , Stevens D. A. , Cegelski L. . ( 2015;). Analysis of the Aspergillus fumigatus biofilm extracellular matrix by solid-state nuclear magnetic resonance spectroscopy. . Eukaryot Cell 14: 1064–1072. [CrossRef] [PubMed]
    [Google Scholar]
  38. Reid D. W. , Carroll V. , O'May C. , Champion A. , Kirov S. M. . ( 2007;). Increased airway iron as a potential factor in the persistence of Pseudomonas aeruginosa infection in cystic fibrosis. . Eur Respir J 30: 286–292. [CrossRef] [PubMed]
    [Google Scholar]
  39. Rex J. H. . ( 2008;). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, , 2nd edn.. Wayne, PA:: CLSI;.
    [Google Scholar]
  40. Rowe S. M. , Miller S. , Sorscher E. J. . ( 2005;). Cystic fibrosis. . N Engl J Med 352: 1992–2001. [CrossRef] [PubMed]
    [Google Scholar]
  41. Schønheyder H. , Jensen T. , Høiby N. , Andersen P. , Koch C . (1985).; Frequency of Aspergillus fumigatus isolates and antibodies to Aspergillus antigens in cystic fibrosis. . Acta Pathol Microbiol Immunol Scand B 93: 105–112. [CrossRef] [PubMed]
    [Google Scholar]
  42. Secor P. R. , Sweere J. M. , Michaels L. A. , Malkovskiy A. V. , Lazzareschi D. , Katznelson E. , Rajadas J. , Birnbaum M. E. , Arrigoni A. et al. ( 2015;). Filamentous bacteriophage promote biofilm assembly and function. . Cell Host Microbe 18: 549–559. [CrossRef] [PubMed]
    [Google Scholar]
  43. Shoseyov D. , Brownlee K. G. , Conway S. P. , Kerem E. . ( 2006;). Aspergillus bronchitis in cystic fibrosis. . Chest 130: 222–226. [CrossRef] [PubMed]
    [Google Scholar]
  44. Singh G. , Imai J. , Clemons K. V. , Stevens D. A. . ( 2005;). Efficacy of caspofungin against central nervous system Aspergillus fumigatus infection in mice determined by TaqMan PCR and CFU methods. . Antimicrob Agents Chemother 49: 1369–1376. [CrossRef] [PubMed]
    [Google Scholar]
  45. Speirs J. J. , van der Ent C. K. , Beekman J. M. . ( 2012;). Effects of Aspergillus fumigatus colonization on lung function in cystic fibrosis. . Curr Opin Pulm Med 18: 632–638. [CrossRef] [PubMed]
    [Google Scholar]
  46. Stevens D. A. , Moss R. B. , Kurup V. P. , Knutsen A. P. , Greenberger P. , Judson M. A. , Denning D. W. , Crameri R. , Brody A. S. et al. ( 2003;). Allergic bronchopulmonary aspergillosis in cystic fibrosis—state of the art: Cystic Fibrosis Foundation Consensus Conference. . Clin Infect Dis 37: S225–264. [CrossRef] [PubMed]
    [Google Scholar]
  47. Tang J. X. , Janmey P. A. , Lyubartsev A. , Nordenskiöld L. . ( 2002;). Metal ion-induced lateral aggregation of filamentous viruses fd and M13. . Biophys J 83: 566–581. [CrossRef] [PubMed]
    [Google Scholar]
  48. Webb J. S. , Lau M. , Kjelleberg S. . ( 2004;). Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. . J Bacteriol 186: 8066–8073. [CrossRef] [PubMed]
    [Google Scholar]
  49. Whitchurch C. B. , Tolker-Nielsen T. , Ragas P. C. , Mattick J. S. . ( 2002;). Extracellular DNA required for bacterial biofilm formation. . Science 295: 1487. [CrossRef] [PubMed]
    [Google Scholar]
  50. Winstanley C. , Langille M. G. , Fothergill J. L. , Kukavica-Ibrulj I. , Paradis-Bleau C. , Sanschagrin F. , Thomson N. R. , Winsor G. L. , Quail M. A. et al. ( 2009;). Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool epidemic strain of Pseudomonas aeruginosa . . Genome Res 19: 12–23. [CrossRef] [PubMed]
    [Google Scholar]
  51. Yeldandi V. , Laghi F. , Larson R. , Husain A. , Garrity E. R. , Husain A. , Montoya A. , Garrity E. R. . ( 1995;). Aspergillus and lung transplantation. . J Heart Lung Transplant 14: 883–890.[PubMed]
    [Google Scholar]
  52. Yeung A. T. , Torfs E. C. , Jamshidi F. , Bains M. , Wiegand I. , Hancock R. E. , Overhage J. . ( 2009;). Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. . J Bacteriol 191: 5592–5602. [CrossRef] [PubMed]
    [Google Scholar]
  53. Zimmermann K. , Hagedorn H. , Heuck C. C. , Hinrichsen M. , Ludwig H. . ( 1986;). The ionic properties of the filamentous bacteriophages Pf1 and fd. . J Biol Chem 261: 1653–1655.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000344
Loading
/content/journal/micro/10.1099/mic.0.000344
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error