1887

Abstract

Natural transformation is the main means of horizontal genetic exchange in the obligate human pathogen and drives the spread of antibiotic resistance and virulence determinants. Transformation can be divided into four steps: (1) DNA binding, (2) DNA uptake, (3) DNA processing and (4) DNA recombination into the chromosome. The DNA processing enzyme DprA has been shown to shuttle incoming ssDNA to the recombination enzyme RecA during transformation in and . Here, we investigate the role of DprA during transformation in . Inactivation of completely abrogated transformation of -encoding DNA, which confers nalidixic acid resistance. The presence of the DNA uptake sequence enhances DNA uptake and transformation by binding to the minor pilus protein ComP. Loss of transformation in the null mutants was independent of the DNA uptake sequence. DprA mutants exhibited increased RecA-dependent pilin variation suggesting that DprA affects pilin variation. Unlike the exquisite UV sensitivity of a mutant, inactivation of did not affect survival following UV irradiation. These results demonstrate that DprA has a conserved function during transformation, and reveal additional effects of DprA in during pilin variation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000343
2016-09-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1620.html?itemId=/content/journal/micro/10.1099/mic.0.000343&mimeType=html&fmt=ahah

References

  1. Ambur O. H., Frye S. A., Tønjum T.. 2007; New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J Bacteriol189:2077–2085 [CrossRef][PubMed]
    [Google Scholar]
  2. Anderson M. T., Seifert H. S.. 2011a; Neisseria gonorrhoeae and humans perform an evolutionary LINE dance. Mob Genet Elements1:85–87 [CrossRef]
    [Google Scholar]
  3. Anderson M. T., Seifert H. S.. 2011b; Opportunity and means: horizontal gene transfer from the human host to a bacterial pathogen. MBio2:e0000500011 [CrossRef]
    [Google Scholar]
  4. Ando T., Israel D. A., Kusugami K., Blaser M. J.. 1999; HP0333, a member of the dprA family, is involved in natural transformation in Helicobacter pylori . J Bacteriol181:5572–5580[PubMed]
    [Google Scholar]
  5. Bergé M., Mortier-Barrière I., Martin B., Claverys J. P.. 2003; Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming DNA single strands. Mol Microbiol50:527–536 [CrossRef][PubMed]
    [Google Scholar]
  6. Berry J. L., Cehovin A., McDowell M. A., Lea S. M., Pelicic V.. 2013; Functional analysis of the interdependence between DNA uptake sequence and its cognate ComP receptor during natural transformation in Neisseria species. PLoS Genet9:e1004014 [CrossRef][PubMed]
    [Google Scholar]
  7. Cahoon L. A., Seifert H. S.. 2011; Focusing homologous recombination: pilin antigenic variation in the pathogenic Neisseria . Mol Microbiol81:1136–1143 [CrossRef][PubMed]
    [Google Scholar]
  8. Cehovin A., Simpson P. J., McDowell M. A., Brown D. R., Noschese R., Pallett M., Brady J., Baldwin G. S., Lea S. M. et al. 2013; Specific DNA recognition mediated by a type IV pilin. Proc Natl Acad Sci U S A110:3065–3070 [CrossRef][PubMed]
    [Google Scholar]
  9. Chaussee M. S., Hill S. A.. 1998; Formation of single-stranded DNA during DNA transformation of Neisseria gonorrhoeae . J Bacteriol180:5117–5122[PubMed]
    [Google Scholar]
  10. Chen I., Dubnau D.. 2004; DNA uptake during bacterial transformation. Nat Rev Microbiol2:241–249 [CrossRef][PubMed]
    [Google Scholar]
  11. Connell T. D., Black W. J., Kawula T. H., Barritt D. S., Dempsey J. A., Kverneland K., Stephenson A., Schepart B. S., Murphy G. L. et al. 1988; Recombination among protein II genes of Neisseria gonorrhoeae generates new coding sequences and increases structural variability in the protein II family. Mol Microbiol2:227–236 [CrossRef][PubMed]
    [Google Scholar]
  12. Craig L., Pique M. E., Tainer J. A.. 2004; Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol2:363–378 [CrossRef][PubMed]
    [Google Scholar]
  13. Criss A. K., Bonney K. M., Chang R. A., Duffin P. M., LeCuyer B. E., Seifert H. S.. 2010; Mismatch correction modulates mutation frequency and pilus phase and antigenic variation in Neisseria gonorrhoeae . J Bacteriol192:316–325 [CrossRef][PubMed]
    [Google Scholar]
  14. Davidsen T., Tuven H. K., Bjørås M., Rødland E. A., Tønjum T.. 2007; Genetic interactions of DNA repair pathways in the pathogen Neisseria meningitidis . J Bacteriol189:5728–5737 [CrossRef][PubMed]
    [Google Scholar]
  15. Duffin P. M., Seifert H. S.. 2010; DNA uptake sequence-mediated enhancement of transformation in Neisseria gonorrhoeae is strain dependent. J Bacteriol192:4436–4444 [CrossRef][PubMed]
    [Google Scholar]
  16. Duffin P. M., Seifert H. S.. 2012; Genetic transformation of Neisseria gonorrhoeae shows a strand preference. FEMS Microbiol Lett334:44–48 [CrossRef][PubMed]
    [Google Scholar]
  17. Dwivedi G. R., Sharma E., Rao D. N.. 2013; Helicobacter pylori DprA alleviates restriction barrier for incoming DNA. Nucleic Acids Res41:3274–3288 [CrossRef][PubMed]
    [Google Scholar]
  18. Dwivedi G. R., Srikanth K. D., Anand P., Naikoo J., Srilatha N. S., Rao D. N.. 2015; Insights into the functional roles of N-terminal and C-terminal domains of Helicobacter pylori DprA. PLoS One10:e0131116 [CrossRef][PubMed]
    [Google Scholar]
  19. Elkins C., Thomas C. E., Seifert H. S., Sparling P. F.. 1991; Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J Bacteriol173:3911–3913[PubMed]
    [Google Scholar]
  20. Fussenegger M., Facius D., Meier J., Meyer T. F.. 1996a; A novel peptidoglycan-linked lipoprotein (ComL) that functions in natural transformation competence of Neisseria gonorrhoeae . Mol Microbiol19:1095–1105 [CrossRef][PubMed]
    [Google Scholar]
  21. Fussenegger M., Kahrs A. F., Facius D., Meyer T. F.. 1996b; Tetrapac (tpc), a novel genotype of Neisseria gonorrhoeae affecting epithelial cell invasion, natural transformation competence and cell separation. Mol Microbiol19:1357–1372 [CrossRef][PubMed]
    [Google Scholar]
  22. Goodman S. D., Scocca J. J.. 1988; Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae . Proc Natl Acad Sci U S A85:6982–6986 [CrossRef][PubMed]
    [Google Scholar]
  23. Haas R., Meyer T. F.. 1986; The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell44:107–115 [CrossRef][PubMed]
    [Google Scholar]
  24. Johnsborg O., Eldholm V., Håvarstein L. S.. 2007; Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol158:767–778 [CrossRef][PubMed]
    [Google Scholar]
  25. Johnston C., Martin B., Fichant G., Polard P., Claverys J. P.. 2014; Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol12:181–196 [CrossRef][PubMed]
    [Google Scholar]
  26. Jonsson A. B., Nyberg G., Normark S.. 1991; Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J10:477–488[PubMed]
    [Google Scholar]
  27. Karudapuram S., Barcak G. J.. 1997; The Haemophilus influenzae dprABC genes constitute a competence-inducible operon that requires the product of the tfoX (sxy) gene for transcriptional activation. J Bacteriol179:4815–4820[PubMed]
    [Google Scholar]
  28. Kellogg D. S., Cohen I. R., Norins L. C., Schroeter A. L., Reising G.. 1968; Neisseria gonorrhoeae II. Colonial variation and pathogenicity during 35 months in vitro . J Bacteriol96:596–605[PubMed]
    [Google Scholar]
  29. Kroll J. S., Wilks K. E., Farrant J. L., Langford P. R.. 1998; Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc Natl Acad Sci U S A95:12381–12385 [CrossRef][PubMed]
    [Google Scholar]
  30. Kunkel T. A., Erie D. A.. 2005; DNA mismatch repair. Annu Rev Biochem74:681–710 [CrossRef][PubMed]
    [Google Scholar]
  31. Levine S. M., Lin E. A., Emara W., Kang J., DiBenedetto M., Ando T., Falush D., Blaser M. J.. 2007; Plastic cells and populations: DNA substrate characteristics in Helicobacter pylori transformation define a flexible but conservative system for genomic variation. FASEB J21:3458–3467 [CrossRef][PubMed]
    [Google Scholar]
  32. Mehr I. J., Seifert H. S.. 1998; Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol Microbiol30:697–710 [CrossRef][PubMed]
    [Google Scholar]
  33. Meyer T. F., Mlawer N., So M.. 1982; Pilus expression in Neisseria gonorrhoeae involves chromosomal rearrangement. Cell30:45–52 [CrossRef][PubMed]
    [Google Scholar]
  34. Mirouze N., Bergé M. A., Soulet A. L., Mortier-Barrière I., Quentin Y., Fichant G., Granadel C., Noirot-Gros M. F., Noirot P. et al. 2013; Direct involvement of DprA, the transformation-dedicated RecA loader, in the shut-off of pneumococcal competence. Proc Natl Acad Sci U S A110:E1035E1044 [CrossRef][PubMed]
    [Google Scholar]
  35. Mortier-Barrière I., Velten M., Dupaigne P., Mirouze N., Piétrement O., McGovern S., Fichant G., Martin B., Noirot P. et al. 2007; A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell130:824–836 [CrossRef][PubMed]
    [Google Scholar]
  36. Quevillon-Cheruel S., Campo N., Mirouze N., Mortier-Barrière I., Brooks M. A., Boudes M., Durand D., Soulet A. L., Lisboa J. et al. 2012; Structure–function analysis of pneumococcal DprA protein reveals that dimerization is crucial for loading RecA recombinase onto DNA during transformation. Proc Natl Acad Sci U S A109:E2466E2475 [CrossRef][PubMed]
    [Google Scholar]
  37. Rotman E., Seifert H. S.. 2014; The genetics of Neisseria species. Annu Rev Genet48:405–431 [CrossRef][PubMed]
    [Google Scholar]
  38. Sechman E. V., Rohrer M. S., Seifert H. S.. 2005; A genetic screen identifies genes and sites involved in pilin antigenic variation in Neisseria gonorrhoeae . Mol Microbiol57:468–483 [CrossRef][PubMed]
    [Google Scholar]
  39. Seifert H. S.. 1997; Insertionally inactivated and inducible recA alleles for use in Neisseria . Gene188:215–220 [CrossRef][PubMed]
    [Google Scholar]
  40. Obergfell K. P., Seifert H. S.. 2015; Mobile DNA in the pathogenic Neisseria . Microbiol Spectr3:MDNA3-0015-2014 [CrossRef][PubMed]
    [Google Scholar]
  41. Smeets L. C., Bijlsma J. J., Kuipers E. J., Vandenbroucke-Grauls C. M., Kusters J. G.. 2000; The dprA gene is required for natural transformation of Helicobacter pylori . FEMS Immunol Med Microbiol27:99–102 [CrossRef][PubMed]
    [Google Scholar]
  42. Smeets L. C., Becker S. C., Barcak G. J., Vandenbroucke-Grauls C. M., Bitter W., Goosen N.. 2006; Functional characterization of the competence protein DprA/Smf in Escherichia coli . FEMS Microbiol Lett263:223–228 [CrossRef][PubMed]
    [Google Scholar]
  43. Smith J. M., Smith N. H., O'Rourke M., Spratt B. G.. 1993; How clonal are bacteria?. Proc Natl Acad Sci U S A90:4384–4388 [CrossRef][PubMed]
    [Google Scholar]
  44. Solomon J. M., Grossman A. D.. 1996; Who's competent and when: regulation of natural genetic competence in bacteria. Trends Genet12:150–155 [CrossRef][PubMed]
    [Google Scholar]
  45. Sparling P. F.. 1966; Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol92:1364–1371[PubMed]
    [Google Scholar]
  46. Stohl E. A., Seifert H. S.. 2006; Neisseria gonorrhoeae DNA recombination and repair enzymes protect against oxidative damage caused by hydrogen peroxide. J Bacteriol188:7645–7651 [CrossRef][PubMed]
    [Google Scholar]
  47. Stohl E. A., Gruenig M. C., Cox M. M., Seifert H. S.. 2011; Purification and characterization of the RecA protein from Neisseria gonorrhoeae . PLoS One6:e17101 [CrossRef][PubMed]
    [Google Scholar]
  48. Sun Y. H., Exley R., Li Y., Goulding D., Tang C.. 2005; Identification and characterization of genes required for competence in Neisseria meningitidis . J Bacteriol187:3273–3276 [CrossRef][PubMed]
    [Google Scholar]
  49. Swanson J., Bergstrom S., Boslego J., Koomey M.. 1987; Gene conversion accounts for pilin structural changes and for reversible piliation “phase” changes in gonococci. Antonie Van Leeuwenhoek53:441–446 [CrossRef][PubMed]
    [Google Scholar]
  50. Tadesse S., Graumann P. L.. 2007; DprA/Smf protein localizes at the DNA uptake machinery in competent Bacillus subtilis cells. BMC Microbiol7:105 [CrossRef][PubMed]
    [Google Scholar]
  51. Takata T., Ando T., Israel D. A., Wassenaar T. M., Blaser M. J.. 2005; Role of dprA in transformation of Campylobacter jejuni . FEMS Microbiol Lett252:161–168 [CrossRef][PubMed]
    [Google Scholar]
  52. Wolfgang M., Lauer P., Park H. S., Brossay L., Hébert J., Koomey M.. 1998; PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae . Mol Microbiol29:321–330 [CrossRef][PubMed]
    [Google Scholar]
  53. Workowski K. A., Bolan G. A.. Centers for Disease Control and Prevention 2015; Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep64:1–137[PubMed][CrossRef]
    [Google Scholar]
  54. Yadav T., Carrasco B., Hejna J., Suzuki Y., Takeyasu K., Alonso J. C.. 2013; Bacillus subtilis DprA recruits RecA onto single-stranded DNA and mediates annealing of complementary strands coated by SsbB and SsbA. J Biol Chem288:22437–22450 [CrossRef][PubMed]
    [Google Scholar]
  55. Yadav T., Carrasco B., Serrano E., Alonso J. C.. 2014; Roles of DprA and SsbA in RecA-mediated genetic recombination. J Biol Chem289:27640–27652 [CrossRef][PubMed]
    [Google Scholar]
  56. Zhang X. S., Blaser M. J.. 2012; DprB facilitates inter- and intragenomic recombination in Helicobacter pylori . J Bacteriol194:3891–3903 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000343
Loading
/content/journal/micro/10.1099/mic.0.000343
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error