1887

Abstract

The present study investigated plant extracts for their anti-quorum-sensing (QS) potential to inhibit the biofilm formation in strains. The bioassay based on loss of pigment production by 026 and NTL4(pZLR4) was used for initial screening of the extracts. Further, the effect of extracts on the inhibition of QS-mediated biofilm in isolates was evaluated using standard crystal violet assay. The effect on biofilm texture was studied using SYTO9 staining and light and scanning electron microscopy. Among the tested extracts, and at 100 ppm resulted in 78 and 68 % reduction in the production of violacein as well as blue-green colour in both biosensor strains. A higher inhibitory activity (>50 %) on biofilm formation in was observed for and whereas the other extracts possessed moderate (25–50 %) and minimal (<25 %) inhibitory activities. Further, the fluorescent and scanning electron microscopic images indicated a major disruption in the architecture of biofilms of tested strains by . This study points to the possibility of using and as inhibitor of QS-mediated biofilm formation by that could be further explored for novel bioactive molecules to limit the emerging infections of

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000342
2016-09-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1708.html?itemId=/content/journal/micro/10.1099/mic.0.000342&mimeType=html&fmt=ahah

References

  1. Amalaradjou M. A. R., Venkitanarayanan K. 2011; Effect of trans-cinnamaldehyde on inhibition and inactivation of Cronobacter sakazakii biofilm on abiotic surfaces. J Food Prot 74:200–208 [View Article][PubMed]
    [Google Scholar]
  2. Choo J. H., Rukayadi Y., Hwang J. K. 2006; Inhibition of bacterial quorum sensing by vanilla extract. Lett Appl Microbiol 42:637–641 [View Article][PubMed]
    [Google Scholar]
  3. CLSI, Clinical and Laboratory Standards Institute 2006 Clinical and Laboratory Standards Institute Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 7th edn. Clinical and Laboratory Standards Institute, USA: Clinical and Laboratory Standards Institute document M7-A7;
    [Google Scholar]
  4. Dong Y. H., Zhang L. H. 2005; Quorum sensing and quorum-quenching enzymes. J Microbiol 43:101–109[PubMed]
    [Google Scholar]
  5. Du X. J., Wang F., Lu X., Rasco B. A., Wang S. 2012; Biochemical and genetic characteristics of Cronobacter sakazakii biofilm formation. Res Microbiol 163:448–456 [View Article][PubMed]
    [Google Scholar]
  6. Hartmann I., Carranza P., Lehner A., Stephan R., Eberl L., Riedel K. 2010; Genes involved in Cronobacter sakazakii biofilm formation. Appl Environ Microbiol 76:2251–2261 [View Article][PubMed]
    [Google Scholar]
  7. Hu L., Grim C. J., Franco A. A., Jarvis K. G., Sathyamoorthy V., Kothary M. H., McCardell B. A., Tall B. D. 2015; Analysis of the cellulose synthase operon genes, bcsA, bcsB, and bcsC in Cronobacter species: prevalence among species and their roles in biofilm formation and cell-cell aggregation. Food Microbiol 52:97–105 [View Article][PubMed]
    [Google Scholar]
  8. Iversen C., Forsythe S. J. 2003; Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends Food Sci Tech 14:443–454 [View Article]
    [Google Scholar]
  9. Iversen C., Lane M., Forsythe S. J. 2004; The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Lett Appl Microbiol 38:378–382 [View Article][PubMed]
    [Google Scholar]
  10. Joseph S., Cetinkaya E., Drahovska H., Levican A., Figueras M. J., Forsythe S. J. 2012; Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients. Int J Syst Evol Microbiol 62:1277–1283 [View Article]
    [Google Scholar]
  11. Jung J. H., Choi N. Y., Lee S. Y. 2013; Biofilm formation and exopolysaccharide (EPS) production by Cronobacter sakazakii depending on environmental conditions. Food Microbiol 34:70–80 [View Article][PubMed]
    [Google Scholar]
  12. Kalyantanda G., Shumyak L., Archibald L. K. 2015; Cronobacter species contamination of powdered infant formula and the implications for neonatal health. Front Pediatr 3:56 [View Article][PubMed]
    [Google Scholar]
  13. Khan M. S., Zahin M., Hasan S., Husain F. M., Ahmad I. 2009; Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Lett Appl Microbiol 49:354–360 [View Article][PubMed]
    [Google Scholar]
  14. Kim H., Ryu J. H., Beuchat L. R. 2006; Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl Environ Microbiol 72:5846–5856 [View Article][PubMed]
    [Google Scholar]
  15. Kim H., Ryu J. H., Beuchat L. R. 2007; Effectiveness of disinfectants in killing Enterobacter sakazakii in suspension, dried on the surface of stainless steel, and in a biofilm. Appl Environ Microbiol 73:1256–1265 [View Article][PubMed]
    [Google Scholar]
  16. Lee Y. D., Park J. H., Chang H. 2012; Detection, antibiotic susceptibility and biofilm formation of Cronobacter spp. from various foods in Korea. Food Control 24:225–230 [View Article]
    [Google Scholar]
  17. Lehner A., Riedel K., Eberl L., Breeuwer P., Diep B., Stephan R. 2005; Biofilm formation, extracellular polysaccharide production, and cell-to-cell signaling in various Enterobacter sakazakii strains: aspects promoting environmental persistence. J Food Prot 68:2287–2294[PubMed]
    [Google Scholar]
  18. Manefield M., de Nys R., Naresh K., Roger R., Givskov M., Peter S., Kjelleberg S. 1999; Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiol 145:283–291 [View Article]
    [Google Scholar]
  19. McLean R. J., Pierson L. S., Fuqua C. 2004; A simple screening protocol for the identification of quorum signal antagonists. J Microbiol Methods 58:351–360 [View Article][PubMed]
    [Google Scholar]
  20. Mukherji R., Prabhune A. 2015; A new class of bacterial quorum sensing antagonists: glycomonoterpenols synthesized using linalool and alpha terpineol. World J Microbiol Biotechnol 31:841–849 [View Article][PubMed]
    [Google Scholar]
  21. Musthafa K., Ravi A., Annapoorani A., Packiavathy I. V., Pandian S. 2010; Evaluation of anti-quorum-sensing activity of edible plants and fruits through inhibition of the N-acyl-homoserine lactone system in Chromobacterium violaceum and Pseudomonas aeruginosa. Chemotherapy 56:333–339 [View Article][PubMed]
    [Google Scholar]
  22. Niu C., Afre S., Gilbert E. S. 2006; Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett Appl Microbiol 43:489–494 [View Article][PubMed]
    [Google Scholar]
  23. Rasmussen T. B., Bjarnsholt T., Skindersoe M. E., Hentzer M., Kristoffersen P., Köte M., Nielsen J., Eberl L., Givskov M. 2005; Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814 [View Article][PubMed]
    [Google Scholar]
  24. Shrout J. D., Tolker-Nielsen T., Givskov M., Parsek M. R. 2011; The contribution of cell–cell signaling and motility to bacterial biofilm formation. MRS Bull 36:367–373 [View Article][PubMed]
    [Google Scholar]
  25. Singh N., Goel G., Raghav M. 2015a; Insights into virulence factors determining the pathogenicity of Cronobacter sakazakii. Virulence 6:433–440 [View Article]
    [Google Scholar]
  26. Singh N., Goel G., Raghav M. 2015b; Prevalence and characterization of Cronobacter spp. from various foods, medicinal plants, and environmental samples. Curr Microbiol 71:31–38 [View Article]
    [Google Scholar]
  27. Song K. Y., Chon J. W., Kim H., Park C., Seo K. H. 2014; Sodium hypochlorite-mediated inactivation of Cronobacter spp. biofilms on conveyor belt chips. Food Sci Biotechnol 23:1893–1896 [View Article]
    [Google Scholar]
  28. Szabó M. A., Varga G. Z., Hohmann J., Schelz Z., Szegedi E., Amaral L., Molnár J. 2010; Inhibition of quorum-sensing signals by essential oils. Phytother Res 24:782–786 [View Article][PubMed]
    [Google Scholar]
  29. Tan L. Y., Yin W. F., Chan K. G. 2013; Piper nigrum, Piper betle and Gnetum gnemon – natural food sources with anti-quorum sensing properties. Sensors 13:3975–3985 [View Article][PubMed]
    [Google Scholar]
  30. Thenmozhi R., Nithyanand P., Rathna J., Pandian S. K. 2009; Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol Med Microbiol 57:284–294 [View Article][PubMed]
    [Google Scholar]
  31. Vattem D. A., Mihalik K., Crixell S. H., McLean R. J. 2007; Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia 78:302–310 [View Article][PubMed]
    [Google Scholar]
  32. Waters C. M., Bassler B. L. 2005; Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346 [View Article][PubMed]
    [Google Scholar]
  33. Yang S., Kim S., Ryu J. H., Kim H. 2013; Inhibitory activity of Paenibacillus polymyxa on the biofilm formation of Cronobacter spp. on stainless steel surfaces. J Food Sci 78:M1036–M1040 [View Article][PubMed]
    [Google Scholar]
  34. Zhou L., Zheng H., Tang Y., Yu W., Gong Q. 2013; Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol Lett 35:631–637 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000342
Loading
/content/journal/micro/10.1099/mic.0.000342
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error