1887

Abstract

The soil bacterial community at the Giessen free-air CO enrichment (Gi-FACE) experiment was analysed by tag sequencing of the 16S rRNA gene. No substantial effects of CO levels on bacterial community composition were detected. However, the soil moisture gradient at Gi-FACE had a significant effect on bacterial community composition. Different groups within the Acidobacteria and Verrucomicrobia phyla were affected differently by soil moisture content. These results suggest that modest increases in atmospheric CO may cause only minor changes in soil bacterial community composition and indicate that the functional responses of the soil community to COenrichment previously reported at Gi-FACE are due to factors other than changes in bacterial community composition. The effects of the moisture gradient revealed new information about the relationships between poorly known Acidobacteria and Verrucomicrobia and soil moisture content. This study contrasts with the relatively small number of other temperate grassland free-air CO enrichment microbiome studies in the use of moderate CO enrichment and the resulting minor changes in the soil microbiome. Thus, it will facilitate the development of further climate change mitigation studies. In addition, the moisture gradient found at Gi-FACE contributes new knowledge in soil microbial ecology, particularly regarding the abundance and moisture relationships of the soil Verrucomicrobia.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000341
2016-09-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1572.html?itemId=/content/journal/micro/10.1099/mic.0.000341&mimeType=html&fmt=ahah

References

  1. Acosta-Martínez V., Cotton J., Gardner T., Moore-Kucera J., Zak J., Wester D., Cox S.. 2014; Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Appl Soil Ecol84:69–82 [CrossRef]
    [Google Scholar]
  2. Anders S., Huber W.. 2010; Differential expression analysis for sequence count data. Genome Biol11:R106 [CrossRef][PubMed]
    [Google Scholar]
  3. Angel R., Kammann C., Claus P., Conrad R.. 2012; Effect of long-term free-air CO2 enrichment on the diversity and activity of soil methanogens in a periodically waterlogged grassland. Soil Biol Biochem51:96–103 [CrossRef]
    [Google Scholar]
  4. Austin E. E., Castro H. F., Sides K. E., Schadt C. W., Classen A. T.. 2009; Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation. Soil Biol Biochem41:514–520 [CrossRef]
    [Google Scholar]
  5. Bergmann G. T., Bates S. T., Eilers K. G., Lauber C. L., Caporaso J. G., Walters W. A., Knight R., Fierer N.. 2011; The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem43:1450–1455 [CrossRef][PubMed]
    [Google Scholar]
  6. Blagodatskaya E., Blagodatsky S., Dorodnikov M., Kuzyakov Y.. 2010; Elevated atmospheric CO2 increases microbial growth rates in soil: results of three CO2 enrichment experiments. Glob Change Biol16:836–848 [CrossRef]
    [Google Scholar]
  7. Buckley D. H., Schmidt T. M.. 2001; Environmental factors influencing the distribution of rRNA from Verrucomicrobia in soil. FEMS Microbiol Ecol35:105–112 [CrossRef][PubMed]
    [Google Scholar]
  8. Buckley D. H., Huangyutitham V., Nelson T. A., Rumberger A., Thies J. E.. 2006; Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity. Appl Environ Microbiol72:4522–4531 [CrossRef][PubMed]
    [Google Scholar]
  9. Carbonetto B., Rascovan N., Álvarez R., Mentaberry A., Vázquez M. P.. 2014; Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas. PLoS One9:e99949 [CrossRef][PubMed]
    [Google Scholar]
  10. Carson J. K., Gonzalez-Quiñones V., Murphy D. V., Hinz C., Shaw J. A., Gleeson D. B.. 2010; Low pore connectivity increases bacterial diversity in soil. Appl Environ Microbiol76:3936–3942 [CrossRef][PubMed]
    [Google Scholar]
  11. Castro H. F., Classen A. T., Austin E. E., Norby R. J., Schadt C. W.. 2010; Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol76:999–1007 [CrossRef][PubMed]
    [Google Scholar]
  12. Clarke K., Gorley R.. 2006; PRIMER V6: User Manual/Tutorial Plymouth, UK: PRIMER-E Ltd;
    [Google Scholar]
  13. de Menezes A. B., Lewis E., O'Donovan M., O'Neill B. F., Clipson N., Doyle E. M.. 2011; Microbiome analysis of dairy cows fed pasture or total mixed ration diets. FEMS Microbiol Ecol78:256–265 [CrossRef][PubMed]
    [Google Scholar]
  14. de Menezes A. B., Prendergast-Miller M. T., Richardson A. E., Toscas P., Farrell M., Macdonald L. M., Baker G., Wark T., Thrall P. H.. 2015; Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters. Environ Microbiol17:2677–2689 [CrossRef][PubMed]
    [Google Scholar]
  15. Deng Y., He Z., Xu M., Qin Y., Van Nostrand J. D., Wu L., Roe B. A., Wiley G., Hobbie S. E. et al. 2012; Elevated carbon dioxide alters the structure of soil microbial communities. Appl Environ Microbiol78:2991–2995 [CrossRef][PubMed]
    [Google Scholar]
  16. Docherty K. M., Gutknecht J. L. M.. 2012; The role of environmental microorganisms in ecosystem responses to global change: current state of research and future outlooks. Biogeochemistry109:1–6 [CrossRef]
    [Google Scholar]
  17. Dorodnikov M., Blagodatskaya E., Blagodatsky S., Fangmeier A., Kuzyakov Y.. 2009; Stimulation of r- vs. K-selected microorganisms by elevated atmospheric CO2 depends on soil aggregate size. FEMS Microbiol Ecol69:43–52 [CrossRef][PubMed]
    [Google Scholar]
  18. Drigo B., van Veen J. A., Kowalchuk G. A.. 2009; Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO2 . ISME J3:1204–1217 [CrossRef][PubMed]
    [Google Scholar]
  19. Dunbar J., Eichorst S. A., Gallegos-Graves L. V., Silva S., Xie G., Hengartner N. W., Evans R. D., Hungate B. A., Jackson R. B. et al. 2012; Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environ Microbiol14:1145–1158 [CrossRef][PubMed]
    [Google Scholar]
  20. Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R.. 2011; UCHIME improves sensitivity and speed of chimera detection. Bioinformatics27:2194–2200 [CrossRef][PubMed]
    [Google Scholar]
  21. Feng X., Simpson A. J., Schlesinger W. H., Simpson M. J.. 2010; Altered microbial community structure and organic matter composition under elevated CO2 and N fertilization in the duke forest. Change Biol16:2104–2116 [CrossRef]
    [Google Scholar]
  22. Fierer N., Ladau J., Clemente J. C., Leff J. W., Owens S. M., Pollard K. S., Knight R., Gilbert J. A., McCulley R. L.. 2013; Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science342:621–624 [CrossRef][PubMed]
    [Google Scholar]
  23. Galbally I. E., Kirstine W.. 2002; The production of methanol by flowering plants and the global cycle of methanol. J Atmos Chem43:195–229[CrossRef]
    [Google Scholar]
  24. Ge Y., Chen C., Xu Z., Oren R., He J. Z.. 2010; The spatial factor, rather than elevated CO2, controls the soil bacterial community in a temperate forest ecosystem. Appl Environ Microb76:7429–7436 [CrossRef]
    [Google Scholar]
  25. George I. F., Hartmann M., Liles M. R., Agathos S. N.. 2011; Recovery of as-yet-uncultured soil acidobacteria on dilute solid media. Appl Environ Microbiol77:8184–8188 [CrossRef][PubMed]
    [Google Scholar]
  26. Griffiths R. I., Whiteley A. S., O'Donnell A. G., Bailey M. J.. 2000; Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol66:5488–5491 [CrossRef][PubMed]
    [Google Scholar]
  27. Griffiths R. I., Thomson B. C., James P., Bell T., Bailey M., Whiteley A. S.. 2011; The bacterial biogeography of British soils. Environ Microbiol13:1642–1654 [CrossRef][PubMed]
    [Google Scholar]
  28. Grüters U., Janze S., Kammann C., Jäger H. J.. 2006; Plant functional types and elevated CO2: a method of scanning for causes of community alteration. J Appl Bot-Food Qual80:116–128
    [Google Scholar]
  29. Guenet B., Lenhart K., Leloup J., Giusti-Miller S., Pouteau V., Mora P., Nunan N., Abbadie L.. 2012; The impact of long-term CO2 enrichment and moisture levels on soil microbial community structure and enzyme activities. Geoderma170:331–336 [CrossRef]
    [Google Scholar]
  30. Hagedorn F., Hiltbrunner D., Streit K., Ekblad A., Lindahl B., Miltner A., Frey B., Handa I. T., Hättenschwiler S.. 2013; Nine years of CO2 enrichment at the alpine treeline stimulates soil respiration but does not alter soil microbial communities. Soil Biol Biochem57:390–400 [CrossRef]
    [Google Scholar]
  31. Hayden H. L., Mele P. M., Bougoure D. S., Allan C. Y., Norng S., Piceno Y. M., Brodie E. L., Desantis T. Z., Andersen G. L. et al. 2012; Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO(2) and warming in an Australian native grassland soil. Environ Microbiol14:3081–3096 [CrossRef][PubMed]
    [Google Scholar]
  32. He Z., Xu M., Deng Y., Kang S., Kellogg L., Wu L., Van Nostrand J. D., Hobbie S. E., Reich P. B., Zhou J.. 2010; Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2 . Ecol Lett13:564–575 [CrossRef][PubMed]
    [Google Scholar]
  33. He Z., Piceno Y., Deng Y., Xu M., Lu Z., Desantis T., Andersen G., Hobbie S. E., Reich P. B., Zhou J.. 2012; The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. ISME J6:259–272 [CrossRef][PubMed]
    [Google Scholar]
  34. Hoosbeek M. R., Scarascia-Mugnozza G. E.. 2009; Increased litter build up and soil organic matter stabilization in a poplar plantation after 6 years of atmospheric CO2 enrichment (face): final results of pop-euroface compared to other forest face experiments. Ecosystems12:220–239[CrossRef]
    [Google Scholar]
  35. Jäger H. J., Schmidt S. W., Kammann C., Grunhage L., Müller C., Hanewald K.. 2003; The University of Giessen Free-Air Carbon Dioxide Enrichment study: description of the experimental site and of a new enrichment system. J Appl Bot-Angew Bot77:117–127
    [Google Scholar]
  36. Janssen P. H.. 2006; Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol72:1719–1728 [CrossRef][PubMed]
    [Google Scholar]
  37. Janssen P. H., Yates P. S., Grinton B. E., Taylor P. M., Sait M.. 2002; Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol68:2391–2396 [CrossRef][PubMed]
    [Google Scholar]
  38. Jones R. T., Robeson M. S., Lauber C. L., Hamady M., Knight R., Fierer N.. 2009; A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J3:442–453 [CrossRef][PubMed]
    [Google Scholar]
  39. Kammann C., Grünhage L., Grüters U., Janze S., Jäger H. J.. 2005; Response of aboveground grassland biomass and soil moisture to moderate long-term CO2 enrichment. Basic Appl Ecol6:351–365 [CrossRef]
    [Google Scholar]
  40. Kammann C., Müller C., Grünhage L., Jäger H. J.. 2008; Elevated CO2 stimulates N2O emissions in permanent grassland. Soil Biol Biochem40:2194–2205 [CrossRef]
    [Google Scholar]
  41. Kammann C., Guillet C., Andresen L., Moser G., Grünhage L., Müller C.. 2015; Increasing N2O emissions under long-term (11 year) free-air CO2 enrichment counterbalance biomass growth stimulation: a carbon balance approach. Procedia Environ Sci29:168–170 [CrossRef]
    [Google Scholar]
  42. Kolb S., Carbrera A., Kammann C., Kämpfer P., Conrad R., Jäckel U.. 2005; Quantitative impact of CO2 enriched atmosphere on abundances of methanotrophic bacteria in a meadow soil. Biol Fert41:337–342[CrossRef]
    [Google Scholar]
  43. Kuczynski J., Liu Z., Lozupone C., McDonald D., Fierer N., Knight R.. 2010; Microbial community resemblance methods differ in their ability to detect biologically relevant patterns. Nat Methods7:813–819 [CrossRef][PubMed]
    [Google Scholar]
  44. Kuever J., Rainey F. A., Widdel F.. 2005; Class IV. Deltaproteobacteria class nov . In Bergey's Manual of Systematic BacteriologyVol. 2, The Proteobacteria pp.922–1144 Edited by Brenner D. J., Krieg N. R., Staley J. T.. New York, NY: Springer;[CrossRef]
    [Google Scholar]
  45. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA82:6955–6959 [CrossRef]
    [Google Scholar]
  46. Lee T. D., Barrott S. H., Reich P. B.. 2011; Photosynthetic responses of 13 grassland species across 11 years of free-air CO2 enrichment is modest, consistent and independent of N supply. Global Biol17:2893–2904 [CrossRef]
    [Google Scholar]
  47. Lennon J. T., Aanderud Z. T., Lehmkuhl B. K., Schoolmaster D. R.. 2012; Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology93:1867–1879 [CrossRef][PubMed]
    [Google Scholar]
  48. Lesaulnier C., Papamichail D., McCorkle S., Ollivier B., Skiena S., Taghavi S., Zak D., van der Lelie D.. 2008; Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol10:926–941 [CrossRef][PubMed]
    [Google Scholar]
  49. Li J., Tibshirani R.. 2013; Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. Stat Methods Med Res22:519–536 [CrossRef][PubMed]
    [Google Scholar]
  50. Lipson D. A., Wilson R. F., Oechel W. C.. 2005; Effects of elevated atmospheric CO2 on soil microbial biomass, activity, and diversity in a chaparral ecosystem. Appl Environ Microbiol71:8573–8580 [CrossRef][PubMed]
    [Google Scholar]
  51. Love M. I., Huber W., Anders S.. 2014; Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol15:550 [CrossRef][PubMed]
    [Google Scholar]
  52. Lucker S., Wagner M., Maixner F., Pelletier E., Koch H., Vacherie B., Rattei T., Damste J. S. S., Spieck E. et al. 2010; A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci USA107:13479–13484 [CrossRef]
    [Google Scholar]
  53. Maestre F. T., Delgado-Baquerizo M., Jeffries T. C., Eldridge D. J., Ochoa V., Gozalo B., Quero J. L., García-Gómez M., Gallardo A.. 2015; Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci USA112:15684–15689
    [Google Scholar]
  54. Martínez I., Wallace G., Zhang C., Legge R., Benson A. K., Carr T. P., Moriyama E. N., Walter J.. 2009; Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol75:4175–4184 [CrossRef][PubMed]
    [Google Scholar]
  55. McMurdie P. J., Holmes S.. 2014; Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol10:e1003531 [CrossRef][PubMed]
    [Google Scholar]
  56. Meinshausen M., Smith S. J., Calvin K., Daniel J. S., Kainuma M. L. T., Lamarque J. F., Matsumoto K., Montzka S. A., Raper S. C. B. et al. 2011; The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change109:213–241 [CrossRef]
    [Google Scholar]
  57. Müller C., Rütting T., Abbasi M. K., Laughlin R. J., Kammann C., Clough T. J., Sherlock R. R., Kattge J., Jäger H. J. et al. 2009; Effect of elevated CO2 on soil N dynamics in a temperate grassland soil. Soil Biol Biochem41:1996–2001 [CrossRef]
    [Google Scholar]
  58. Muyzer G., Dewaal E. C., Uitterlinden A. G.. 1993; Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S ribosomal RNA. Appl Environ Microb59:695–700
    [Google Scholar]
  59. Navarrete A. A., Soares T., Rossetto R., van Veen J. A., Tsai S. M., Kuramae E. E.. 2015; Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Antonie Van Leeuwenhoek108:741–752 [CrossRef][PubMed]
    [Google Scholar]
  60. Nelson J. A., Morgan J. A., LeCain D. R., Mosier A. R., Milchunas D. G., Parton B. A.. 2004; Elevated CO2 increases soil moisture and enhances plant water relations in a long-term field study in semi-arid shortgrass steppe of Colorado. Plant Soil259:169–179 [CrossRef]
    [Google Scholar]
  61. Norby R. J., Ledford J., Reilly C. D., Miller N. E., O'Neill E. G.. 2004; Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc Natl Acad Sci U S A101:9689–9693 [CrossRef][PubMed]
    [Google Scholar]
  62. Pett-Ridge J., Firestone M. K.. 2005; Redox fluctuation structures microbial communities in a wet tropical soil. Appl Environ Microbiol71:6998–7007 [CrossRef][PubMed]
    [Google Scholar]
  63. Phillips R. P., Bernhardt E. S., Schlesinger W. H.. 2009; Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree Physiol29:1513–1523 [CrossRef][PubMed]
    [Google Scholar]
  64. Pritchard S. G.. 2011; Soil organisms and global climate change. Plant Pathol60:82–99 [CrossRef]
    [Google Scholar]
  65. Quaiser A., Ochsenreiter T., Lanz C., Schuster S. C., Treusch A. H., Eck J., Schleper C.. 2003; Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol Microbiol50:563–575 [CrossRef][PubMed]
    [Google Scholar]
  66. Ranjan K., Paula F. S., Mueller R. C., Jesus E. C., Cenciani K., Bohannan B. J. M., Nüsslein K., Rodrigues J. L. M.. 2015; Forest-to-pasture conversion increases the diversity of the phylum Verrucomicrobia in Amazon rainforest soils. Front Microbiol6:779 [CrossRef][PubMed]
    [Google Scholar]
  67. Regan K., Kammann C., Hartung K., Lenhart K., Müller C., Philippot L., Kandeler E., Marhan S.. 2011; Can differences in microbial abundances help explain enhanced N2O emissions in a permanent grassland under elevated atmospheric CO2?. Glob Biol17:3176–3186 [CrossRef]
    [Google Scholar]
  68. Schloss P. D.. 2009a; A high-throughput DNA sequence aligner for microbial ecology studies. PLoS One4:e8230 [CrossRef]
    [Google Scholar]
  69. Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H. et al. 2009b; Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol75:7537–7541 [CrossRef]
    [Google Scholar]
  70. Singh B. K., Bardgett R. D., Smith P., Reay D. S.. 2010; Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol8:779–790 [CrossRef][PubMed]
    [Google Scholar]
  71. Sowerby A., Emmett B., Beier C., Tietema A., Peñuelas J., Estiarte M., Van Meeteren M. J. M., Hughes S., Freeman C.. 2005; Microbial community changes in heathland soil communities along a geographical gradient: interaction with climate change manipulations. Soil Biol Biochem37:1805–1813 [CrossRef]
    [Google Scholar]
  72. Treves D. S., Xia B., Zhou J., Tiedje J. M.. 2003; A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microb Ecol45:20–28 [CrossRef][PubMed]
    [Google Scholar]
  73. Turner T. R., Ramakrishnan K., Walshaw J., Heavens D., Alston M., Swarbreck D., Osbourn A., Grant A., Poole P. S.. 2013; Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J7:2248–2258 [CrossRef][PubMed]
    [Google Scholar]
  74. Weber C. F., Vilgalys R., Kuske C. R.. 2013; Changes in fungal community composition in response to elevated atmospheric CO2 and nitrogen fertilization varies with soil horizon. Front Microbiol4:78 [CrossRef][PubMed]
    [Google Scholar]
  75. Yamada T., Sekiguchi Y.. 2009; Cultivation of uncultured chloroflexi subphyla: significance and ecophysiology of formerly uncultured chloroflexi ‘subphylum i' with natural and biotechnological relevance. Microbes Environ24:205–216 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000341
Loading
/content/journal/micro/10.1099/mic.0.000341
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error