1887

Abstract

Bacteriocins represent a rather underutilized class of antimicrobials despite often displaying activity against many drug-resistant pathogens. Lantibiotics are a post-translationally modified class of bacteriocins, characterized by the presence of lanthionine and methyllanthionine bridges. In this study, a novel two-peptide lantibiotic was isolated and characterized. Formicin was isolated from Bacillus paralicheniformis APC 1576, an antimicrobial-producing strain originally isolated from the intestine of a mackerel. Genome sequencing allowed for the detection of the formicin operon and, from this, the formicin structural genes were identified, along with those involved in lantibiotic modification, transport and immunity. The identified bacteriocin was subsequently purified from the bacterial supernatant. Despite the degree of conservation seen amongst the entire class of two-peptide lantibiotics, the formicin peptides are unique in many respects. The formicin α peptide is far less hydrophobic than any of the equivalent lantibiotics, and with a charge of plus two, it is one of the most positively charged α peptides. The β peptide is unique in that it is the only such peptide with a negative charge due to the presence of an aspartic acid residue in the C-terminus, possibly indicating a slight variation to the mode of action of the bacteriocin. Formicin also displays a broad spectrum of inhibition against Gram-positive strains, inhibiting many clinically relevant pathogens such as Staphylococcus aureus, Clostridium difficile and Listeria monocytogenes. The range of inhibition displayed against many important pathogens indicates a potential therapeutic use against such strains where antibiotic resistance is such a growing concern.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000340
2016-09-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1662.html?itemId=/content/journal/micro/10.1099/mic.0.000340&mimeType=html&fmt=ahah

References

  1. Alkhatib Z., Abts A., Mavaro A., Schmitt L., Smits S. H..( 2012;). Lantibiotics: how do producers become self-protected?. J Biotechnol 159: 145–154. [CrossRef] [PubMed]
    [Google Scholar]
  2. Begley M., Cotter P. D., Hill C., Ross R. P..( 2009;). Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. . Appl Environ Microbiol 75: 5451–5460. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chatterjee S., Chatterjee S., Lad S. J., Phansalkar M. S., Rupp R. H., Ganguli B. N., Fehlhaber H. W., Kogler H..( 1992;). Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization. . J Antibiot 45: 832–838. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cooper L. E., McClerren A. L., Chary A., van der Donk W. A..( 2008;). Structure–activity relationship studies of the two-component lantibiotic haloduracin. . Chem Biol 15: 1035–1045. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cotter P. D., Deegan L. H., Lawton E. M., Draper L. A., O'Connor P. M., Hill C., Ross R. P..( 2006;). Complete alanine scanning of the two-component lantibiotic lacticin 3147: generating a blueprint for rational drug design. . Mol Microbiol 62: 735–747. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cotter P. D., Ross R. P., Hill C..( 2013;). Bacteriocins – a viable alternative to antibiotics?. Nat Rev Microbiol 11: 95–105. [CrossRef] [PubMed]
    [Google Scholar]
  7. de Jong A., van Hijum S. A., Bijlsma J. J., Kok J., Kuipers O. P..( 2006;). BAGEL: a web-based bacteriocin genome mining tool. . Nucleic Acids Res 34: W273–W279. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dischinger J., Josten M., Szekat C., Sahl H. G., Bierbaum G..( 2009;). Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13. . PLoS One 4: e6788. [CrossRef] [PubMed]
    [Google Scholar]
  9. Escano J., Stauffer B., Brennan J., Bullock M., Smith L..( 2015;). Biosynthesis and transport of the lantibiotic mutacin 1140 produced by Streptococcus mutans. . J Bacteriol 197: 1173–1184. [CrossRef] [PubMed]
    [Google Scholar]
  10. Fimland G., Pirneskoski J., Kaewsrichan J., Jutila A., Kristiansen P. E., Kinnunen P. K., Nissen-Meyer J..( 2006;). Mutational analysis and membrane-interactions of the β-sheet-like N-terminal domain of the pediocin-like antimicrobial peptide sakacin P. . Biochim Biophys Acta 1764: 1132–1140. [CrossRef] [PubMed]
    [Google Scholar]
  11. Furgerson Ihnken L. A., Chatterjee C., van der Donk W. A..( 2008;). In vitro reconstitution and substrate specificity of a lantibiotic protease. . Biochemistry 47: 7352–7363. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gillor O., Nigro L. M., Riley M. A..( 2005;). Genetically engineered bacteriocins and their potential as the next generation of antimicrobials. . Curr Pharm Des 11: 1067–1075. [CrossRef] [PubMed]
    [Google Scholar]
  13. Holo H., Jeknic Z., Daeschel M., Stevanovic S., Nes I. F..( 2001;). Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. . Microbiology 147: 643–651. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hsu S. T., Breukink E., Bierbaum G., Sahl H. G., de Kruijff B., Kaptein R., van Nuland N. A., Bonvin A. M..( 2003;). NMR study of mersacidin and lipid II interaction in dodecylphosphocholine micelles. Conformational changes are a key to antimicrobial activity. . J Biol Chem 278: 13110–13117. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hyink O., Balakrishnan M., Tagg J. R..( 2005;). Streptococcus rattus strain BHT produces both a class I two-component lantibiotic and a class II bacteriocin. . FEMS Microbiol Lett 252: 235–241. [CrossRef] [PubMed]
    [Google Scholar]
  16. Katz E., Demain A. L..( 1977;). The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. . Bacteriol Rev 41: 449–474.[PubMed]
    [Google Scholar]
  17. Lee J. H., Li X., O'Sullivan D. J..( 2011;). Transcription analysis of a lantibiotic gene cluster from Bifidobacterium longum DJO10A. . Appl Environ Microbiol 77: 5879–5887. [CrossRef] [PubMed]
    [Google Scholar]
  18. Martin N. I., Sprules T., Carpenter M. R., Cotter P. D., Hill C., Ross R. P., Vederas J. C..( 2004;). Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. . Biochemistry 43: 3049–3056. [CrossRef] [PubMed]
    [Google Scholar]
  19. McClerren A. L., Cooper L. E., Quan C., Thomas P. M., Kelleher N. L., van der Donk W. A..( 2006;). Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. . Proc Natl Acad Sci U S A 103: 17243–17248. [CrossRef] [PubMed]
    [Google Scholar]
  20. Medema M. H., Blin K., Cimermancic P., de Jager V., Zakrzewski P., Fischbach M. A., Weber T., Takano E., Breitling R..( 2011;). antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. . Nucleic Acids Res 39: W339–W346. [CrossRef] [PubMed]
    [Google Scholar]
  21. Navaratna M. A., Sahl H. G., Tagg J. R..( 1998;). Two-component anti-Staphylococcus aureus lantibiotic activity produced by Staphylococcus aureus C55. . Appl Environ Microbiol 64: 4803–4808.[PubMed]
    [Google Scholar]
  22. Okuda K., Yanagihara S., Sugayama T., Zendo T., Nakayama J., Sonomoto K..( 2010;). Functional significance of the E loop, a novel motif conserved in the lantibiotic immunity ATP-binding cassette transport systems. . J Bacteriol 192: 2801–2808. [CrossRef] [PubMed]
    [Google Scholar]
  23. Rea M. C., Sit C. S., Clayton E., O'Connor P. M., Whittal R. M., Zheng J., Vederas J. C., Ross R. P., Hill C..( 2010;). Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. . Proc Natl Acad Sci U S A 107: 9352–9357. [CrossRef] [PubMed]
    [Google Scholar]
  24. Rea M. C., Dobson A., O'Sullivan O., Crispie F., Fouhy F., Cotter P. D., Shanahan F., Kiely B., Hill C., Ross R. P..( 2011;). Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. . Proc Natl Acad Sci U S A 108: 4639–4644. [CrossRef] [PubMed]
    [Google Scholar]
  25. Rogers L. A..( 1928;). The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. . J Bacteriol 16: 321–325.
    [Google Scholar]
  26. Ryan M. P., Rea M. C., Hill C., Ross R. P..( 1996;). An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. . Appl Environ Microbiol 62: 612–619.[PubMed]
    [Google Scholar]
  27. Sawa N., Wilaipun P., Kinoshita S., Zendo T., Leelawatcharamas V., Nakayama J., Sonomoto K..( 2012;). Isolation and characterization of enterocin W, a novel two-peptide lantibiotic produced by Enterococcus faecalis NKR-4-1. . Appl Environ Microbiol 78: 900–903. [CrossRef] [PubMed]
    [Google Scholar]
  28. Stein T., Heinzmann S., Düsterhus S., Borchert S., Entian K. D..( 2005;). Expression and functional analysis of the subtilin immunity genes spaifeg in the subtilin-sensitive host Bacillus subtilis MO1099. . J Bacteriol 187: 822–828. [CrossRef] [PubMed]
    [Google Scholar]
  29. Takala T. M., Koponen O., Qiao M., Saris P. E. J..( 2004;). Lipid-free NisI: interaction with nisin and contribution to nisin immunity via secretion. . FEMS Microbiol Lett 237: 171–177. [CrossRef]
    [Google Scholar]
  30. Tang W., Dong S.-H., Repka L. M., He C., Nair S. K., van der Donk W. A..( 2015;). Applications of the class II lanthipeptide protease LicP for sequence-specific, traceless peptide bond cleavage. . Chem Sci 6: 6270–6279. [CrossRef]
    [Google Scholar]
  31. van Heel A. J., de Jong A., Montalbán-López M., Kok J., Kuipers O. P..( 2013;). BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. . Nucleic Acids Res 41: W448–W453. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wiedemann I., Böttiger T., Bonelli R. R., Wiese A., Hagge S. O., Gutsmann T., Seydel U., Deegan L., Hill C. et al.( 2006;). The mode of action of the lantibiotic lacticin 3147 – a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. . Mol Microbiol 61: 285–296. [CrossRef] [PubMed]
    [Google Scholar]
  33. Willey J. M., van der Donk W. A..( 2007;). Lantibiotics: peptides of diverse structure and function. . Annu Rev Microbiol 61: 477–501. [CrossRef] [PubMed]
    [Google Scholar]
  34. Xie L., van der Donk W. A..( 2004;). Post-translational modifications during lantibiotic biosynthesis. . Curr Opin Chem Biol 8: 498–507. [CrossRef] [PubMed]
    [Google Scholar]
  35. Yonezawa H., Kuramitsu H. K..( 2005;). Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. . Antimicrob Agents Chemother 49: 541–548. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000340
Loading
/content/journal/micro/10.1099/mic.0.000340
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error