1887

Abstract

YbaO is an uncharacterized AsnC-family transcription factor of . In both and , YbaO homologues were identified to regulate the adjacent gene encoding cysteine desulfhydrase for detoxification of cysteine. Using the genomic SELEX (systematic evolution of ligands by exponential enrichment) screening system, we identified the operon, located far from the gene on the genome, as a single regulatory target of YbaO. In both gel shift assay and reporter and Northern blot assays , YbaO was found to regulate the promoter. The growth of mutants lacking either or its targets was delayed in the presence of cysteine, indicating involvement of these genes in cysteine detoxification. In the major pathway of cysteine degradation, hydrogen sulfide is produced in wild-type , but its production was not observed in each of the and mutants. The promoter was activated in the presence of cysteine, implying the role of cysteine in activation of YbaO. Taken together, we propose that YbaO is the cysteine-sensing transcriptional activator of the operon, which is involved in the detoxification of cysteine. We then propose the naming of as (regulator of detoxification of cysteine).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000337
2016-09-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1698.html?itemId=/content/journal/micro/10.1099/mic.0.000337&mimeType=html&fmt=ahah

References

  1. Awano N., Wada M., Mori H., Nakamori S., Takagi H.. 2005; Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl Environ Microbiol71:4149–4152 [CrossRef][PubMed]
    [Google Scholar]
  2. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.. 2006; Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol2:2006.008 [CrossRef][PubMed]
    [Google Scholar]
  3. Datsenko K. A., Wanner B. L.. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci97:6640–6645 [CrossRef]
    [Google Scholar]
  4. Finn R. D., Bateman A., Clements J., Coggill P., Eberhardt R. Y., Eddy S. R., Heger A., Hetherington K., Holm L. et al. 2014; Pfam: the protein families database. Nucleic Acids Res42:D222–D230 [CrossRef][PubMed]
    [Google Scholar]
  5. Guarneros G., Ortega M. V.. 1970; Cysteine desulfhydrase activities of Salmonella typhimurium and Escherichia coli. Biochim Biophys Acta198:132–142 [CrossRef][PubMed]
    [Google Scholar]
  6. Hatahet F., Boyd D., Beckwith J.. 2014; Disulfide bond formation in prokaryotes: history, diversity and design. Biochim Biophys Acta1844:1402–1414 [CrossRef][PubMed]
    [Google Scholar]
  7. Hennicke F., Grumbt M., Lermann U., Ueberschaar N., Palige K., Böttcher B., Jacobsen I. D., Staib C., Morschhäuser J. et al. 2013; Factors supporting cysteine tolerance and sulfite production in Candida albicans. Eukaryot Cell12:604–613 [CrossRef][PubMed]
    [Google Scholar]
  8. Ishihama A.. 2010; Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol Rev34:628–645 [CrossRef][PubMed]
    [Google Scholar]
  9. Ishihama A.. 2012; Prokaryotic genome regulation: a revolutionary paradigm. Proc Jpn Acad Ser B Phys Biol Sci88:485–508 [CrossRef][PubMed]
    [Google Scholar]
  10. Ishihama A., Kori A., Koshio E., Yamada K., Maeda H., Shimada T., Makinoshima H., Iwata A., Fujita N.. 2014; Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli. J Bacteriol196:2718–2727 [CrossRef][PubMed]
    [Google Scholar]
  11. Ishihama A., Shimada T., Yamazaki Y.. 2016; Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors. Nucleic Acids Res44:2058–2074 [CrossRef][PubMed]
    [Google Scholar]
  12. Ishiwata K., Nakamura T., Shimada M., Makiguchi N.. 1989; Enzymatic production of l-cysteine with tryptophan synthase of Escherichia coli. J Fermentation Bioeng67:169–172 [CrossRef]
    [Google Scholar]
  13. Jagura-Burdzy G., Hulanicka D.. 1981; Use of gene fusions to study expression of cysB, the regulatory gene of the cysteine regulon. J Bacteriol147:744–751 [CrossRef][PubMed]
    [Google Scholar]
  14. Kredich N. M.. 1992; The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli. Mol Microbiol6:2747–2753 [CrossRef][PubMed]
    [Google Scholar]
  15. Lochowska A., Iwanicka-Nowicka R., Plochocka D., Hryniewicz M. M.. 2001; Functional dissection of the LysR-type CysB transcriptional regulator. Regions important for DNA binding, inducer response, oligomerization, and positive control. J Biol Chem276:2098–2107 [CrossRef][PubMed]
    [Google Scholar]
  16. Miller J. H.. 1972; Experiments in Molecular Genetics New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Méndez J., Reimundo P., Pérez-Pascual D., Navais R., Gómez E., Guijarro J. A.. 2011; A novel cdsAB operon is involved in the uptake of l-cysteine and participates in the pathogenesis of Yersinia ruckeri. J Bacteriol193:944–951 [CrossRef][PubMed]
    [Google Scholar]
  18. Nakamori S., Kobayashi S. I., Kobayashi C., Takagi H.. 1998; Overproduction of l-cysteine and l-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl Environ Microbiol64:1607–1611[PubMed]
    [Google Scholar]
  19. Ogasawara H., Ishida Y., Yamada K., Yamamoto K., Ishihama A.. 2007; PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in Escherichia coli. J Bacteriol189:5534–5541 [CrossRef][PubMed]
    [Google Scholar]
  20. Oguri T., Schneider B., Reitzer L.. 2012; Cysteine catabolism and cysteine desulfhydrase (CdsH/STM0458) in Salmonella enterica serovar Typhimurium. J Bacteriol194:4366–4376 [CrossRef][PubMed]
    [Google Scholar]
  21. Saier M. H., Reddy V. S., Tamang D. G., Västermark A.. 2014; The transporter classification database. Nucleic Acids Res42:D251–D258 [CrossRef][PubMed]
    [Google Scholar]
  22. Shatalin K., Shatalina E., Mironov A., Nudler E.. 2011; H2S: a universal defense against antibiotics in bacteria. Science334:986–990 [CrossRef][PubMed]
    [Google Scholar]
  23. Shimada T., Fujita N., Maeda M., Ishihama A.. 2005; Systematic search for the Cra-binding promoters using genomic SELEX system. Genes Cells10:907–918 [CrossRef][PubMed]
    [Google Scholar]
  24. Shimada T., Hirao K., Kori A., Yamamoto K., Ishihama A.. 2007; RutR is the uracil/thymine-sensing master regulator of a set of genes for synthesis and degradation of pyrimidines. Mol Microbiol66:744–757 [CrossRef][PubMed]
    [Google Scholar]
  25. Shimada T., Bridier A., Briandet R., Ishihama A.. 2011a; Novel roles of LeuO in transcription regulation of E. coli: antagonistic interplay with the universal silencer H-NS. Mol Microbiol82:378–397 [CrossRef]
    [Google Scholar]
  26. Shimada T., Fujita N., Yamamoto K., Ishihama A.. 2011b; Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS ONE6:e20081 [CrossRef]
    [Google Scholar]
  27. Shimada T., Yamamoto K., Ishihama A.. 2011c; Novel members of the Cra regulon involved in carbon metabolism in Escherichia coli. J Bacteriol193:649–659 [CrossRef]
    [Google Scholar]
  28. Shimada T., Yamazaki Y., Tanaka K., Ishihama A.. 2014; The whole set of constitutive promoters recognized by RNA polymerase RpoD holoenzyme of Escherichia coli. PLoS One9:e90447 [CrossRef][PubMed]
    [Google Scholar]
  29. Simons R. W., Houman F., Kleckner N.. 1987; Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene53:85–96 [CrossRef][PubMed]
    [Google Scholar]
  30. Snell E. E.. 1975; Tryptophanase: structure, catalytic activities, and mechanism of action. Adv Enzymol Relat Areas Mol Biol42:287–333[PubMed]
    [Google Scholar]
  31. Soutourina J., Blanquet S., Plateau P.. 2001; Role of d-cysteine desulfhydrase in the adaptation of Escherichia coli to d-cysteine. J Biol Chem276:40864–40872 [CrossRef][PubMed]
    [Google Scholar]
  32. Sørensen M. A., Pedersen S.. 1991; Cysteine, even in low concentrations, induces transient amino acid starvation in Escherichia coli. J Bacteriol173:5244–5246[PubMed]
    [Google Scholar]
  33. Takumi K., Nonaka G.. 2016; Bacterial cysteine-inducible cysteine resistance systems. J Bacteriol198:1384–1392 [CrossRef][PubMed]
    [Google Scholar]
  34. Tchong S. I., Xu H., White R. H.. 2005; l-Cysteine desulfidase: an [4Fe-4S] enzyme isolated from Methanocaldococcus jannaschii that catalyzes the breakdown of l-cysteine into pyruvate, ammonia, and sulfide. Biochemistry44:1659–1670 [CrossRef][PubMed]
    [Google Scholar]
  35. Teramoto J., Yoshimura S. H., Takeyasu K., Ishihama A.. 2010; A novel nucleoid protein of Escherichia coli induced under anaerobiotic growth conditions. Nucleic Acids Res38:3605–3618 [CrossRef][PubMed]
    [Google Scholar]
  36. van der Ploeg J. R., Iwanicka-Nowicka R., Kertesz M. A., Leisinger T., Hryniewicz M. M.. 1997; Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli. J Bacteriol179:7671–7678[PubMed]
    [Google Scholar]
  37. Yamanaka Y., Shimada T., Yamamoto K., Ishihama A.. 2016; Transcription factor CecR (YbiH) regulates a set of genes affecting the sensitivity of Escherichia coli against cefoperazone and chloramphenicol. Microbiology 162:1253–1264 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000337
Loading
/content/journal/micro/10.1099/mic.0.000337
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error