1887

Abstract

Citrobacter rodentium is a Gram-negative, murine-specific enteric pathogen that infects epithelial cells in the colon. It is closely related to the clinically relevant human pathogen, enterohemorrhagic Escherichia coli (EHEC), a leading cause of haemorrhagic colitis and haemolytic uremic syndrome. We have previously reported that a novel antimicrobial peptide, wrwycr, compromises bacterial DNA repair and significantly reduces the survival of acid-stressed EHEC, suggesting an antimicrobial strategy for targeting the survival of ingested EHEC. This study examines the impact of peptide pretreatment on survival of the closely related murine pathogen, C. rodentium, before and after acid stress, using both in vitro and in vivo investigations. Peptide pretreatment of C. rodentium significantly and dramatically increases acid-stress-induced killing in a peptide-dose-dependent and time-dependent manner. Reduction in survival rates after brief pretreatment with peptide (25–65 µM) followed by 1 h at pH 3.5 ranges from 6 to 8 log fold relative to untreated C. rodentium, with no detectable bacteria after 65 µM peptide-acid treatment. Using a C57BL/6 mouse model of infection, peptide pretreatment of C. rodentium with wrwycr prior to orogastric gavage eliminates evidence of infection based on C. rodentium colonization levels, faecal scores, colonic histology, faecal microbiome and visual observation of overall animal health. These findings provide compelling evidence for the role of the peptide wrwycr as a potential strategy to control the growth and colonization of enteric pathogens.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000335
2016-09-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1641.html?itemId=/content/journal/micro/10.1099/mic.0.000335&mimeType=html&fmt=ahah

References

  1. Ardissino G., Tel F., Possenti I., Testa S., Consonni D., Paglialonga F., Salardi S., Borsa-Ghiringhelli N., Salice P. et al.( 2016;). Early volume expansion and outcomes of hemolytic uremic syndrome. . Pediatrics 137: 1–9. [CrossRef]
    [Google Scholar]
  2. Assa A., Vong L., Pinnell L. J., Avitzur N., Johnson-Henry K. C., Sherman P. M..( 2014;). Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. . J Infect Dis 210: 1296–1305. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bacchetti De Gregoris T., Aldred N., Clare A. S., Burgess J. G..( 2011;). Improvement of phylum- and class-specific primers for real-time PCR quantification of bacterial taxa. . J Microbiol Methods 86: 351–356. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bavaro M. F..( 2009;). Escherichia coli O157: what every internist and gastroenterologist should know. . Curr Gastroenterol Rep 11: 301–306. [CrossRef] [PubMed]
    [Google Scholar]
  5. Boldt J. L., Pinilla C., Segall A. M..( 2004;). Reversible inhibitors of lambda integrase-mediated recombination efficiently trap Holliday junction intermediates and form the basis of a novel assay for junction resolution. . J Biol Chem 279: 3472–3483. [CrossRef] [PubMed]
    [Google Scholar]
  6. Brenneman K. E., Willingham C., Kilbourne J. A., Curtiss R., Roland K. L..( 2014;). A low gastric pH mouse model to evaluate live attenuated bacterial vaccines. . PLoS One 9: e87411. [CrossRef] [PubMed]
    [Google Scholar]
  7. Collins J. W., Keeney K. M., Crepin V. F., Rathinam V. A. K., Fitzgerald K. A., Finlay B. B., Frankel G..( 2014;). Citrobacter rodentium: infection, inflammation and the microbiota. . Nat Rev Microbiol 12: 612–623. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cornfield D. N..( 2016;). Shifting the paradigm in hemolytic uremic syndrome. . Pediatrics 137: 1–2. [CrossRef]
    [Google Scholar]
  9. Cox E., Melkebeek V., Devriendt B., Goddeeris B., Vanrompay D..( 2014;). Vaccines against enteric E. coli infections in animals. . In Pathogenic Escherichia Coli: Molecular and Cellular Microbiology , pp. 255–270. Edited by Morabito S.. Poole, UK:: Caister Academic Press;.
    [Google Scholar]
  10. Crane J. K., Byrd I. W., Boedeker E. C..( 2011;). Virulence inhibition by zinc in shiga-toxigenic Escherichia coli. . Infect Immun 79: 1696–1705. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dey M., Patra S., Su L. Y., Segall A. M..( 2013;). Tumor cell death mediated by peptides that recognize branched intermediates of DNA replication and repair. . PLoS One 8: e78751. [CrossRef] [PubMed]
    [Google Scholar]
  12. Dolgin E..( 2011;). As E. coli continues to claim lives, new approaches offer hope. . Nat Med 17: 755. [CrossRef] [PubMed]
    [Google Scholar]
  13. Etienne-Mesmin L., Chassaing B., Sauvanet P., Denizot J., Blanquet-Diot S., Darfeuille-Michaud A., Pradel N., Livrelli V..( 2011;). Interactions with M cells and macrophages as key steps in the pathogenesis of enterohemorrhagic Escherichia coli infections. . PLoS One 6: e23594. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gareau M. G., Wine E., Rodrigues D. M., Cho J. H., Whary M. T., Philpott D. J., Macqueen G., Sherman P. M..( 2011;). Bacterial infection causes stress-induced memory dysfunction in mice. . Gut 60: 307–317. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gunderson C. W., Segall A. M..( 2006;). DNA repair, a novel antibacterial target: Holliday junction-trapping peptides induce DNA damage and chromosome segregation defects. . Mol Microbiol 59: 1129–1148. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gunderson C. W., Boldt J. L., Authement R. N., Segall A. M..( 2009;). Peptide wrwycr inhibits the excision of several prophages and traps holliday junctions inside bacteria. . J Bacteriol 191: 2169–2176. [CrossRef] [PubMed]
    [Google Scholar]
  17. House B., Kus J. V., Prayitno N., Mair R., Que L., Chingcuanco F., Gannon V., Cvitkovitch D. G., Foster D. B..( 2009;). Acid-stress-induced changes in enterohaemorrhagic Escherichia coli O157:H7 virulence. . Microbiology 155: 2907–2918. [CrossRef] [PubMed]
    [Google Scholar]
  18. Johnson-Henry K. C., Nadjafi M., Avitzur Y., Mitchell D. J., Ngan B. Y., Galindo-Mata E., Jones N. L., Sherman P. M..( 2005;). Amelioration of the effects of Citrobacter rodentium infection in mice by pretreatment with probiotics. . J Infect Dis 191: 2106–2117. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kepple K. V., Boldt J. L., Segall A. M..( 2005;). Holliday junction-binding peptides inhibit distinct junction-processing enzymes. . Proc Natl Acad Sci U S A 102: 6867–6872. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kepple K. V., Patel N., Salamon P., Segall A. M..( 2008;). Interactions between branched DNAs and peptide inhibitors of DNA repair. . Nucleic Acids Res 36: 5319–5334. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kunkel T. A..( 1984;). Mutational specificity of depurination. . Proc Natl Acad Sci U S A 81: 1494–1498. [CrossRef] [PubMed]
    [Google Scholar]
  22. Laursen L..( 2011;). E. coli crisis opens door for Alexion drug trial. . Nat Biotechnol 29: 671. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lin J., Smith M. P., Chapin K. C., Baik H. S., Bennett G. N., Foster J. W..( 1996;). Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. . Appl Environ Microbiol 62: 3094–3100.[PubMed]
    [Google Scholar]
  24. Lino M., Kus J. V., Tran S. L., Naqvi Z., Binnington B., Goodman S. D., Segall A. M., Foster D. B..( 2011;). A novel antimicrobial peptide significantly enhances acid-induced killing of Shiga toxin-producing Escherichia coli O157 and non-O157 serotypes. . Microbiology 157: 1768–1775. [CrossRef] [PubMed]
    [Google Scholar]
  25. Livak K. J., Schmittgen T. D..( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. . Methods 25: 402–408. [CrossRef] [PubMed]
    [Google Scholar]
  26. Mah T. F., O'Toole G. A..( 2001;). Mechanisms of biofilm resistance to antimicrobial agents. . Trends Microbiol 9: 34–39. [CrossRef] [PubMed]
    [Google Scholar]
  27. McConnell E. L., Basit A. W., Murdan S..( 2008;). Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. . J Pharm Pharmacol 60: 63–70. [CrossRef] [PubMed]
    [Google Scholar]
  28. McKeel R., Douris N., Foley P. L., Feldman S. H..( 2002;). Comparison of an espB gene fecal polymerase chain reaction assay with bacteriologic isolation for detection of Citrobacter rodentium infection in mice. . Comp Med 52: 439–444.[PubMed]
    [Google Scholar]
  29. McManus M. C..( 1997;). Mechanisms of bacterial resistance to antimicrobial agents. . Am J Health Syst Pharm 54: 1420–1433.[PubMed]
    [Google Scholar]
  30. McNeilly T. N., Mitchell M. C., Rosser T., McAteer S., Low J. C., Smith D. G. E., Huntley J. F., Mahajan A., Gally D. L..( 2010;). Immunization of cattle with a combination of purified intimin-531, EspA and Tir significantly reduces shedding of Escherichia coli O157:H7 following oral challenge. . Vaccine 28: 1422–1428. [CrossRef] [PubMed]
    [Google Scholar]
  31. Orchard S. S., Rostron J. E., Segall A. M..( 2012;). Escherichia coli enterobactin synthesis and uptake mutants are hypersensitive to an antimicrobial peptide that limits the availability of iron in addition to blocking Holliday junction resolution. . Microbiology 158: 547–559. [CrossRef] [PubMed]
    [Google Scholar]
  32. Pfaffl M. W..( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. . Nucleic Acids Res 29: e45. [CrossRef]
    [Google Scholar]
  33. Rodrigues D. M., Sousa A. J., Johnson-Henry K. C., Sherman P. M., Gareau M. G..( 2012;). Probiotics are effective for the prevention and treatment of Citrobacter rodentium-induced colitis in mice. . J Infect Dis 206: 99–109. [CrossRef] [PubMed]
    [Google Scholar]
  34. Rosenshine I., Ruschkowski S., Finlay B. B..( 1996;). Expression of attaching/effacing activity by enteropathogenic Escherichia coli depends on growth phase, temperature, and protein synthesis upon contact with epithelial cells. . Infect Immun 64: 966–973.[PubMed]
    [Google Scholar]
  35. Smith A., Bhagwat A. A..( 2013;). Hypervirulent-host-associated Citrobacter rodentium cells have poor acid tolerance. . Curr Microbiol 66: 522–526. [CrossRef] [PubMed]
    [Google Scholar]
  36. Stewart P. S., William Costerton J., Costerton J. W..( 2001;). Antibiotic resistance of bacteria in biofilms. . The Lancet 358: 135–138. [CrossRef]
    [Google Scholar]
  37. Su L. Y., Willner D. L., Segall A. M..( 2010;). An antimicrobial peptide that targets DNA repair intermediates in vitro inhibits Salmonella growth within murine macrophages. . Antimicrob Agents Chemother 54: 1888–1899. [CrossRef] [PubMed]
    [Google Scholar]
  38. Tenover F. C..( 2006;). Mechanisms of antimicrobial resistance in bacteria. . Am J Med 119: S3–S10. [CrossRef] [PubMed]
    [Google Scholar]
  39. Thorpe C. M..( 2004;). Shiga toxin-producing Escherichia coli infection. . Clin Infect Dis 38: 1298–1303. [CrossRef] [PubMed]
    [Google Scholar]
  40. Yitzhaki S., Rostron J. E., Xu Y., Rideout M. C., Authement R. N., Barlow S. B., Segall A. M..( 2012;). Similarities between Exogenously- and endogenously-induced envelope stress: the effects of a new antibacterial molecule, TPI1609-10. . PLoS One 7: e44896. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000335
Loading
/content/journal/micro/10.1099/mic.0.000335
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error