1887

Abstract

Aromatic compounds such as phenylalanine, 2-phenylethanol and -cinnamate are aromatic compounds of industrial interest. Current trends support replacement of chemical synthesis of these compounds by ‘green’ alternatives produced in microbial cell factories. The solvent-tolerant DOT-T1E strain was genetically modified to produce up to 1 g lof -phenylalanine. In order to engineer this strain, we carried out the following stepwise process: (1) we selected random mutants that are resistant to toxic phenylalanine analogues; (2) we then deleted up to five genes belonging to phenylalanine metabolism pathways, which greatly diminished the internal metabolism of phenylalanine; and (3) in these mutants, we overexpressed the gene, which encodes a recombinant variant of PheA that is insensitive to feedback inhibition by phenylalanine. Furthermore, by introducing new genes, we were able to further extend the diversity of compounds produced. Introduction of histidinol phosphate transferase (PP_0967), phenylpyruvate decarboxylase () and an alcohol dehydrogenase () enabled the strain to produce up to 180 mg l 2-phenylethanol. When phenylalanine ammonia lyase () was introduced, the resulting strain produced up to 200 mg l of -cinnamate. These results demonstrate that can serve as a promising microbial cell factory for the production of -phenylalanine and related compounds.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000333
2016-09-01
2021-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1535.html?itemId=/content/journal/micro/10.1099/mic.0.000333&mimeType=html&fmt=ahah

References

  1. Achmon Y., Ben-Barak Zelas Z., Fishman A. 2014; Cloning Rosa hybrid phenylacetaldehyde synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system. Appl Microbiol Biotechnol 98:3603–3611 [View Article][PubMed]
    [Google Scholar]
  2. Báez-Viveros J. L., Flores N., Juárez K., Castillo-España P., Bolivar F., Gosset G. 2007; Metabolic transcription analysis of engineered Escherichia coli strains that overproduce l-phenylalanine. Microb Cell Fact 6:30 [View Article][PubMed]
    [Google Scholar]
  3. Berry A. 1996; Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol 14:250–256 [View Article][PubMed]
    [Google Scholar]
  4. Bongaerts J., Krämer M., Müller U., Raeven L., Wubbolts M. 2001; Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3:289–300 [View Article][PubMed]
    [Google Scholar]
  5. Burt S. 2004; Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol 94:223–253 [View Article][PubMed]
    [Google Scholar]
  6. Cochrane F. C., Davin L. B., Lewis N. G. 2004; The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65:1557–1564 [View Article][PubMed]
    [Google Scholar]
  7. Cui Z., Yang X., Shen Q., Wang K., Zhu T. 2011; Optimisation of biotransformation conditions for production of 2-phenylethanol by a Saccharomyces cerevisiae CWY132 mutant. Nat Prod Res 25:754–759 [View Article][PubMed]
    [Google Scholar]
  8. Ding R., Liu L., Chen X., Cui Z., Zhang A., Ren D., Zhang L. 2014; Introduction of two mutations into AroG increases phenylalanine production in Escherichia coli . Biotechnol Lett 36:2103–2108 [View Article][PubMed]
    [Google Scholar]
  9. Dueñas-Sánchez R., Pérez A. G., Codón A. C., Benítez T., Rincón A. M. 2014; Overproduction of 2-phenylethanol by industrial yeasts to improve organoleptic properties of bakers products. Int J Food Microbiol 180:7–12 [View Article][PubMed]
    [Google Scholar]
  10. Duque E., Molina-Henares A. J., Torre J. d. l., Molina-Henares M. A., Castillo T. d., Lam J., Ramos J. L. 2007; Towards a genome-wide mutant library of Pseudomonas putida strain KT2440. In Pseudomonas: A Model System in Biology pp. 227–251 Edited by Ramos J. L., Filloux A. Dordrecht: Springer Netherlands;
    [Google Scholar]
  11. Etschmann M. M., Bluemke W., Sell D., Schrader J. 2002; Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol 59:1–8 [View Article][PubMed]
    [Google Scholar]
  12. Etschmann M. M., Sell D., Schrader J. 2003; Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotechnol Lett 25:531–536[PubMed] [CrossRef]
    [Google Scholar]
  13. Gibson D. G., Young L., Chuang R. Y., Venter J. C., Hutchison C. A., Smith H. O. 2009; Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345 [View Article][PubMed]
    [Google Scholar]
  14. Grant S. G., Jessee J., Bloom F. R., Hanahan D. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649 [View Article][PubMed]
    [Google Scholar]
  15. Hanahan D., Meselson M. 1980; Plasmid screening at high colony density. Gene 10:63–67 [View Article][PubMed]
    [Google Scholar]
  16. Hazelwood L. A., Daran J. M., van Maris A. J., Pronk J. T., Dickinson J. R. 2008; The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266 [View Article][PubMed]
    [Google Scholar]
  17. Jenck J. F., Agterberg F., Droescher M. J. 2004; Products and processes for a sustainable chemical industry: a review of achievements and prospects. Green Chem 6:544–556 [View Article]
    [Google Scholar]
  18. Li Z., Ji X., Kan S., Qiao H., Jiang M., Lu D., Wang J., Huang H., Jia H. et al. 2010; Past, present and future industrial biotechnology in China. Adv Biochem Eng Biotechnol 122:1–42 [View Article][PubMed]
    [Google Scholar]
  19. Liu S. P., Liu R. X., Xiao M. R., Zhang L., Ding Z. Y., Gu Z. H., Shi G. Y. 2014; A systems level engineered E. coli capable of efficiently producing l-phenylalanine. Process Biochem 49:751–757 [View Article]
    [Google Scholar]
  20. Maeda H., Dudareva N. 2012; The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105 [View Article][PubMed]
    [Google Scholar]
  21. Martínez-García E., de Lorenzo V. 2011; Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 13:2702–2716 [View Article][PubMed]
    [Google Scholar]
  22. Martínez-García E., de Lorenzo V. 2012; Transposon-based and plasmid-based genetic tools for editing genomes of gram-negative bacteria. Methods Mol Biol 813:267–283 [View Article][PubMed]
    [Google Scholar]
  23. McKenna R., Nielsen D. R. 2011; Styrene biosynthesis from glucose by engineered E. coli . Metab Eng 13:544–554 [View Article][PubMed]
    [Google Scholar]
  24. Miyamoto K., Sasaki M., Minamisawa Y., Kurahashi Y., Kano H., Ishikawa S. 2004; Evaluation of in vivo biocompatibility and biodegradation of photocrosslinked hyaluronate hydrogels (HADgels). J Biomed Mater Res A 70:550–559 [View Article][PubMed]
    [Google Scholar]
  25. Nijkamp K., van Luijk N., de Bont J. A., Wery J. 2005; The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose. Appl Microbiol Biotechnol 69:170–177 [View Article][PubMed]
    [Google Scholar]
  26. Nijkamp K., Westerhof R. G., Ballerstedt H., de Bont J. A., Wery J. 2007; Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose. Appl Microbiol Biotechnol 74:617–624 [View Article][PubMed]
    [Google Scholar]
  27. Noda S., Miyazaki T., Miyoshi T., Miyake M., Okai N., Tanaka T., Ogino C., Kondo A. 2011; Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase. J Ind Microbiol Biotechnol 38:643–648 [View Article][PubMed]
    [Google Scholar]
  28. Notarnicola B., Hayashi K., Curran M. A., Huisingh D. 2012; Progress in working towards a more sustainable agri-food industry. J Clean Prod 28:1–8 [View Article]
    [Google Scholar]
  29. Olins P. O., Rangwala S. H. 1989; A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in Escherichia coli . J Biol Chem 264:16973–16976[PubMed]
    [Google Scholar]
  30. Pugh S., McKenna R., Osman M., Thompson B., Nielsen D. R. 2014; Rational engineering of a novel pathway for producing the aromatic compounds p-hydroxybenzoate, protocatechuate, and catechol in Escherichia coli . Process Biochemistry 49:1843–1850 [View Article]
    [Google Scholar]
  31. Ramos J. L., Duque E., Huertas M. J., Haïdour A. 1995; Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916[PubMed]
    [Google Scholar]
  32. Ramos J. L., Duque E., Godoy P., Segura A. 1998; Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J Bacteriol 180:3323–3329[PubMed]
    [Google Scholar]
  33. Ramos J. L., Valdivia M., García-Lorente F., Segura A. 2016; Benefits and perspectives on the use of biofuels. Microb Biotechnol 9:436–440 [View Article][PubMed]
    [Google Scholar]
  34. Rodriguez A., Martínez J. A., Flores N., Escalante A., Gosset G., Bolivar F. 2014; Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Fact 13:126 [View Article][PubMed]
    [Google Scholar]
  35. Rojas A., Duque E., Mosqueda G., Golden G., Hurtado A., Ramos J. L., Segura A. 2001; Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 183:3967–3973 [View Article][PubMed]
    [Google Scholar]
  36. Sambrook J., Russell D. 2001 Molecular Cloning: a Laboratory Manual Edited by Russell D. W. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  37. Silva-Rocha R., Martínez-García E., Calles B., Chavarría M., Arce-Rodríguez A., de Las Heras A., Páez-Espino A. D., Durante-Rodríguez G., Kim J. et al. 2013; The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:D666–D675 [View Article][PubMed]
    [Google Scholar]
  38. Stark D., Münch T., Sonnleitner B., Marison I. W., von Stockar U. 2002; Extractive bioconversion of 2-phenylethanol from l-phenylalanine by Saccharomyces cerevisiae . Biotechnol Prog 18:514–523 [View Article][PubMed]
    [Google Scholar]
  39. Studier F. W., Moffatt B. A. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130 [View Article][PubMed]
    [Google Scholar]
  40. Udaondo Z., Molina L., Daniels C., Gómez M. J., Molina-Henares M. A., Matilla M. A., Roca A., Fernández M., Duque E. et al. 2013; Metabolic potential of the organic-solvent tolerant Pseudomonas putida DOT-T1E deduced from its annotated genome. Microb Biotechnol 6:598–611 [View Article][PubMed]
    [Google Scholar]
  41. Vargas-Tah A., Gosset G. 2015; Production of cinnamic and p-hydroxycinnamic acids in engineered microbes. Front Bioeng Biotechnol 3:116 [View Article][PubMed]
    [Google Scholar]
  42. Weber F. J., Ooijkaas L. P., Schemen R. M., Hartmans S., de Bont J. A. 1993; Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl Environ Microbiol 59:3502–3504[PubMed]
    [Google Scholar]
  43. Wong S. M., Mekalanos J. J. 2000; Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 97:10191–10196 [View Article]
    [Google Scholar]
  44. Zhang C., Zhang J., Kang Z., Du G., Yu X., Wang T., Chen J. 2013; Enhanced production of l-phenylalanine in Corynebacterium glutamicum due to the introduction of Escherichia coli wild-type gene aroH. J Ind Microbiol Biotechnol 40:643–651 [View Article][PubMed]
    [Google Scholar]
  45. Zhang H., Cao M., Jiang X., Zou H., Wang C., Xu X., Xian M. 2014; De-novo synthesis of 2-phenylethanol by Enterobacter sp. CGMCC 5087. BMC Biotechnol 14:30 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000333
Loading
/content/journal/micro/10.1099/mic.0.000333
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error