1887

Abstract

Aromatic compounds such as phenylalanine, 2-phenylethanol and -cinnamate are aromatic compounds of industrial interest. Current trends support replacement of chemical synthesis of these compounds by ‘green’ alternatives produced in microbial cell factories. The solvent-tolerant DOT-T1E strain was genetically modified to produce up to 1 g lof -phenylalanine. In order to engineer this strain, we carried out the following stepwise process: (1) we selected random mutants that are resistant to toxic phenylalanine analogues; (2) we then deleted up to five genes belonging to phenylalanine metabolism pathways, which greatly diminished the internal metabolism of phenylalanine; and (3) in these mutants, we overexpressed the gene, which encodes a recombinant variant of PheA that is insensitive to feedback inhibition by phenylalanine. Furthermore, by introducing new genes, we were able to further extend the diversity of compounds produced. Introduction of histidinol phosphate transferase (PP_0967), phenylpyruvate decarboxylase () and an alcohol dehydrogenase () enabled the strain to produce up to 180 mg l 2-phenylethanol. When phenylalanine ammonia lyase () was introduced, the resulting strain produced up to 200 mg l of -cinnamate. These results demonstrate that can serve as a promising microbial cell factory for the production of -phenylalanine and related compounds.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000333
2016-09-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/9/1535.html?itemId=/content/journal/micro/10.1099/mic.0.000333&mimeType=html&fmt=ahah

References

  1. Achmon Y., Ben-Barak Zelas Z., Fishman A.. 2014; Cloning Rosa hybrid phenylacetaldehyde synthase for the production of 2-phenylethanol in a whole cell Escherichia coli system. Appl Microbiol Biotechnol98:3603–3611 [CrossRef][PubMed]
    [Google Scholar]
  2. Báez-Viveros J. L., Flores N., Juárez K., Castillo-España P., Bolivar F., Gosset G.. 2007; Metabolic transcription analysis of engineered Escherichia coli strains that overproduce l-phenylalanine. Microb Cell Fact6:30 [CrossRef][PubMed]
    [Google Scholar]
  3. Berry A.. 1996; Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol14:250–256 [CrossRef][PubMed]
    [Google Scholar]
  4. Bongaerts J., Krämer M., Müller U., Raeven L., Wubbolts M.. 2001; Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng3:289–300 [CrossRef][PubMed]
    [Google Scholar]
  5. Burt S.. 2004; Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol94:223–253 [CrossRef][PubMed]
    [Google Scholar]
  6. Cochrane F. C., Davin L. B., Lewis N. G.. 2004; The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry65:1557–1564 [CrossRef][PubMed]
    [Google Scholar]
  7. Cui Z., Yang X., Shen Q., Wang K., Zhu T.. 2011; Optimisation of biotransformation conditions for production of 2-phenylethanol by a Saccharomyces cerevisiae CWY132 mutant. Nat Prod Res25:754–759 [CrossRef][PubMed]
    [Google Scholar]
  8. Ding R., Liu L., Chen X., Cui Z., Zhang A., Ren D., Zhang L.. 2014; Introduction of two mutations into AroG increases phenylalanine production in Escherichia coli . Biotechnol Lett36:2103–2108 [CrossRef][PubMed]
    [Google Scholar]
  9. Dueñas-Sánchez R., Pérez A. G., Codón A. C., Benítez T., Rincón A. M.. 2014; Overproduction of 2-phenylethanol by industrial yeasts to improve organoleptic properties of bakers products. Int J Food Microbiol180:7–12 [CrossRef][PubMed]
    [Google Scholar]
  10. Duque E., Molina-Henares A. J., Torre J. d. l., Molina-Henares M. A., Castillo T. d., Lam J., Ramos J. L.. 2007; Towards a genome-wide mutant library of Pseudomonas putida strain KT2440. In Pseudomonas: A Model System in Biology pp.227–251 Edited by Ramos J. L., Filloux A.. Dordrecht: Springer Netherlands;
    [Google Scholar]
  11. Etschmann M. M., Bluemke W., Sell D., Schrader J.. 2002; Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol59:1–8 [CrossRef][PubMed]
    [Google Scholar]
  12. Etschmann M. M., Sell D., Schrader J.. 2003; Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotechnol Lett25:531–536[PubMed][CrossRef]
    [Google Scholar]
  13. Gibson D. G., Young L., Chuang R. Y., Venter J. C., Hutchison C. A., Smith H. O.. 2009; Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods6:343–345 [CrossRef][PubMed]
    [Google Scholar]
  14. Grant S. G., Jessee J., Bloom F. R., Hanahan D.. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A87:4645–4649 [CrossRef][PubMed]
    [Google Scholar]
  15. Hanahan D., Meselson M.. 1980; Plasmid screening at high colony density. Gene10:63–67 [CrossRef][PubMed]
    [Google Scholar]
  16. Hazelwood L. A., Daran J. M., van Maris A. J., Pronk J. T., Dickinson J. R.. 2008; The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol74:2259–2266 [CrossRef][PubMed]
    [Google Scholar]
  17. Jenck J. F., Agterberg F., Droescher M. J.. 2004; Products and processes for a sustainable chemical industry: a review of achievements and prospects. Green Chem6:544–556 [CrossRef]
    [Google Scholar]
  18. Li Z., Ji X., Kan S., Qiao H., Jiang M., Lu D., Wang J., Huang H., Jia H. et al. 2010; Past, present and future industrial biotechnology in China. Adv Biochem Eng Biotechnol122:1–42 [CrossRef][PubMed]
    [Google Scholar]
  19. Liu S. P., Liu R. X., Xiao M. R., Zhang L., Ding Z. Y., Gu Z. H., Shi G. Y.. 2014; A systems level engineered E. coli capable of efficiently producing l-phenylalanine. Process Biochem49:751–757 [CrossRef]
    [Google Scholar]
  20. Maeda H., Dudareva N.. 2012; The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol63:73–105 [CrossRef][PubMed]
    [Google Scholar]
  21. Martínez-García E., de Lorenzo V.. 2011; Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol13:2702–2716 [CrossRef][PubMed]
    [Google Scholar]
  22. Martínez-García E., de Lorenzo V.. 2012; Transposon-based and plasmid-based genetic tools for editing genomes of gram-negative bacteria. Methods Mol Biol813:267–283 [CrossRef][PubMed]
    [Google Scholar]
  23. McKenna R., Nielsen D. R.. 2011; Styrene biosynthesis from glucose by engineered E. coli . Metab Eng13:544–554 [CrossRef][PubMed]
    [Google Scholar]
  24. Miyamoto K., Sasaki M., Minamisawa Y., Kurahashi Y., Kano H., Ishikawa S.. 2004; Evaluation of in vivo biocompatibility and biodegradation of photocrosslinked hyaluronate hydrogels (HADgels). J Biomed Mater Res A70:550–559 [CrossRef][PubMed]
    [Google Scholar]
  25. Nijkamp K., van Luijk N., de Bont J. A., Wery J.. 2005; The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose. Appl Microbiol Biotechnol69:170–177 [CrossRef][PubMed]
    [Google Scholar]
  26. Nijkamp K., Westerhof R. G., Ballerstedt H., de Bont J. A., Wery J.. 2007; Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose. Appl Microbiol Biotechnol74:617–624 [CrossRef][PubMed]
    [Google Scholar]
  27. Noda S., Miyazaki T., Miyoshi T., Miyake M., Okai N., Tanaka T., Ogino C., Kondo A.. 2011; Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase. J Ind Microbiol Biotechnol38:643–648 [CrossRef][PubMed]
    [Google Scholar]
  28. Notarnicola B., Hayashi K., Curran M. A., Huisingh D.. 2012; Progress in working towards a more sustainable agri-food industry. J Clean Prod28:1–8 [CrossRef]
    [Google Scholar]
  29. Olins P. O., Rangwala S. H.. 1989; A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in Escherichia coli . J Biol Chem264:16973–16976[PubMed]
    [Google Scholar]
  30. Pugh S., McKenna R., Osman M., Thompson B., Nielsen D. R.. 2014; Rational engineering of a novel pathway for producing the aromatic compounds p-hydroxybenzoate, protocatechuate, and catechol in Escherichia coli . Process Biochemistry49:1843–1850 [CrossRef]
    [Google Scholar]
  31. Ramos J. L., Duque E., Huertas M. J., Haïdour A.. 1995; Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol177:3911–3916[PubMed]
    [Google Scholar]
  32. Ramos J. L., Duque E., Godoy P., Segura A.. 1998; Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J Bacteriol180:3323–3329[PubMed]
    [Google Scholar]
  33. Ramos J. L., Valdivia M., García-Lorente F., Segura A.. 2016; Benefits and perspectives on the use of biofuels. Microb Biotechnol9:436–440 [CrossRef][PubMed]
    [Google Scholar]
  34. Rodriguez A., Martínez J. A., Flores N., Escalante A., Gosset G., Bolivar F.. 2014; Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Fact13:126 [CrossRef][PubMed]
    [Google Scholar]
  35. Rojas A., Duque E., Mosqueda G., Golden G., Hurtado A., Ramos J. L., Segura A.. 2001; Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol183:3967–3973 [CrossRef][PubMed]
    [Google Scholar]
  36. Sambrook J., Russell D.. 2001; Molecular Cloning: a Laboratory Manual Edited by Russell D. W.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  37. Silva-Rocha R., Martínez-García E., Calles B., Chavarría M., Arce-Rodríguez A., de Las Heras A., Páez-Espino A. D., Durante-Rodríguez G., Kim J. et al. 2013; The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res41:D666–D675 [CrossRef][PubMed]
    [Google Scholar]
  38. Stark D., Münch T., Sonnleitner B., Marison I. W., von Stockar U.. 2002; Extractive bioconversion of 2-phenylethanol from l-phenylalanine by Saccharomyces cerevisiae . Biotechnol Prog18:514–523 [CrossRef][PubMed]
    [Google Scholar]
  39. Studier F. W., Moffatt B. A.. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol189:113–130 [CrossRef][PubMed]
    [Google Scholar]
  40. Udaondo Z., Molina L., Daniels C., Gómez M. J., Molina-Henares M. A., Matilla M. A., Roca A., Fernández M., Duque E. et al. 2013; Metabolic potential of the organic-solvent tolerant Pseudomonas putida DOT-T1E deduced from its annotated genome. Microb Biotechnol6:598–611 [CrossRef][PubMed]
    [Google Scholar]
  41. Vargas-Tah A., Gosset G.. 2015; Production of cinnamic and p-hydroxycinnamic acids in engineered microbes. Front Bioeng Biotechnol3:116 [CrossRef][PubMed]
    [Google Scholar]
  42. Weber F. J., Ooijkaas L. P., Schemen R. M., Hartmans S., de Bont J. A.. 1993; Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl Environ Microbiol59:3502–3504[PubMed]
    [Google Scholar]
  43. Wong S. M., Mekalanos J. J.. 2000; Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A97:10191–10196 [CrossRef]
    [Google Scholar]
  44. Zhang C., Zhang J., Kang Z., Du G., Yu X., Wang T., Chen J.. 2013; Enhanced production of l-phenylalanine in Corynebacterium glutamicum due to the introduction of Escherichia coli wild-type gene aroH. J Ind Microbiol Biotechnol40:643–651 [CrossRef][PubMed]
    [Google Scholar]
  45. Zhang H., Cao M., Jiang X., Zou H., Wang C., Xu X., Xian M.. 2014; De-novo synthesis of 2-phenylethanol by Enterobacter sp. CGMCC 5087. BMC Biotechnol14:30 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000333
Loading
/content/journal/micro/10.1099/mic.0.000333
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error