1887

Abstract

Phytoplasmas are plant-pathogenic, phloem-colonizing, cell wall-less microorganisms that are primarily dependent on insect transmission for their spread and survival. The life cycle of phytoplasmas involves replication in insects and host plants. Until recently, phytoplasmas have resisted all attempts at cultivation in cell-free media, making these pathogens poorly characterized on a physiological and biochemical basis. However, host–pathogen relationships can be studied by investigating immunodominant membrane proteins (IDPs), which are located on the exterior surfaces of phytoplasma cells and are the most abundant proteins of the cell membrane. These membrane proteins come in direct contact with both insect and plant hosts and are thought to play a crucial role in phytoplasma spread both within the plant and by insect vectors. Therefore, there is great interest in studying this class of proteins. We summarize and discuss important investigations about these membrane proteins, which have already provided a better understanding of the host–phytoplasma relationship.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000331
2016-08-01
2020-04-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/8/1267.html?itemId=/content/journal/micro/10.1099/mic.0.000331&mimeType=html&fmt=ahah

References

  1. Arashida R., Kakizawa S., Ishii Y., Hoshi A., Jung H. Y., Kagiwada S., Yamaji Y., Oshima K., Namba S.. 2008; Cloning and characterization of the antigenic membrane protein (Amp) gene and in situ detection of Amp from malformed flowers infected with Japanese hydrangea phyllody phytoplasma. Phytopathology98:769–775 [CrossRef][PubMed]
    [Google Scholar]
  2. Bai X., Zhang J., Ewing A., Miller S. A., Jancso Radek A., Shevchenko D., Tsukerman K., Walunas T., Lapidus A. et al. 2006; Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol188:3682–3696 [CrossRef][PubMed]
    [Google Scholar]
  3. Barbara D. J., Morton A., Clark M. F., Davies D. L.. 2002; Immunodominant membrane proteins from two phytoplasmas in the aster yellows clade (chlorante aster yellows and clover phyllody) are highly divergent in the major hydrophilic region. Microbiology148:157–167 [CrossRef][PubMed]
    [Google Scholar]
  4. Berg M., Davies D. L., Clark M. F., Vetten H. J., Maier G., Marcone C., Seemüller E.. 1999; Isolation of the gene encoding an immunodominant membrane protein of the apple proliferation phytoplasma, and expression and characterization of the gene product. Microbiology145:1937–1943 [CrossRef][PubMed]
    [Google Scholar]
  5. Blomquist C. L., Barbara D. J., Davies D. L., Clark M. F., Kirkpatrick B. C.. 2001; An immunodominant membrane protein gene from the Western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology147:571–580 [CrossRef][PubMed]
    [Google Scholar]
  6. Boonrod K., Galetzka D., Nagy P. D., Conrad U., Krczal G.. 2004; Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance. Nat Biotechnol22:856–862 [CrossRef][PubMed]
    [Google Scholar]
  7. Boonrod K., Munteanu B., Jarausch B., Jarausch W., Krczal G.. 2012; An immunodominant membrane protein (Imp) of ‘Candidatus Phytoplasma mali’ binds to plant actin. Mol Plant Microbe Interact25:889–895 [CrossRef][PubMed]
    [Google Scholar]
  8. Bosco D., Galetto L., Leoncini P., Saracco P., Raccah B., Marzachì C.. 2007; Interrelationships between ‘Candidatus Phytoplasma asteris’ and its leafhopper vectors (Homoptera: Cicadellidae). J Econ Entomol100:1504–1511 [CrossRef][PubMed]
    [Google Scholar]
  9. Buxa S. V., Degola F., Polizzotto R., De Marco F., Loschi A., Kogel K. H., di Toppi L. S., van Bel A. J., Musetti R.. 2015; Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements. Front Plant Sci6:650 [CrossRef][PubMed]
    [Google Scholar]
  10. Contaldo N., Bertaccini A., Paltrinieri S., Windsor H. M., Windsor G. D.. 2012; Axenic culture of plant pathogenic phytoplasmas. Phytopathol. Mediterr51:607–617
    [Google Scholar]
  11. Duan C. G., Wang C. H., Guo H. S.. 2012; Application of RNA silencing to plant disease resistance. Silence3:5 [CrossRef][PubMed]
    [Google Scholar]
  12. Economou A.. 1999; Following the leader: bacterial protein export through the Sec pathway. Trends Microbiol7:315–320 [CrossRef][PubMed]
    [Google Scholar]
  13. Galetto L., Fletcher J., Bosco D., Turina M., Wayadande A., Marzachì C.. 2008; Characterization of putative membrane protein genes of the ‘Candidatus Phytoplasma asteris’, chrysanthemum yellows isolate. Can J Microbiol54:341–351 [CrossRef][PubMed]
    [Google Scholar]
  14. Galetto L., Bosco D., Balestrini R., Genre A., Fletcher J., Marzachì C.. 2011; The major antigenic membrane protein of ‘Candidatus Phytoplasma asteris’ selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS One6:e22571 [CrossRef][PubMed]
    [Google Scholar]
  15. Galetto L., Siampour M., Marzachì C.. 2013; Preparation of phytoplasma membrane recombinant proteins. Methods Mol Biol938:351–369 [CrossRef][PubMed]
    [Google Scholar]
  16. Hong Y., Davies D. L., van Wezel R., Ellerker B. E., Morton A., Barbara D.. 2001; Expression of the immunodominant membrane protein of chlorantie-aster yellows phytoplasma in Nicotiana benthamiana from a potato virus X-based vector. Acta Horticulturae550:409–416 [CrossRef]
    [Google Scholar]
  17. Kakizawa S., Oshima K., Kuboyama T., Nishigawa H., Jung H., Sawayanagi T., Tsuchizaki T., Miyata S., Ugaki M., Namba S.. 2001; Cloning and expression analysis of Phytoplasma protein translocation genes. Mol Plant Microbe Interact14:1043–1050 [CrossRef][PubMed]
    [Google Scholar]
  18. Kakizawa S., Oshima K., Nishigawa H., Jung H. Y., Wei W., Suzuki S., Tanaka M., Miyata S., Ugaki M., Namba S.. 2004; Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli . Microbiology150:135–142 [CrossRef][PubMed]
    [Google Scholar]
  19. Kakizawa S., Oshima K., Jung H. -Y., Suzuki S., Nishigawa H., Arashida R., Miyata S.-i., Ugaki M., Kishino H., Namba S.. 2006a; Positive selection acting on a surface membrane protein of the plant-pathogenic phytoplasmas. J Bacteriol188:3424–3428 [CrossRef]
    [Google Scholar]
  20. Kakizawa S., Oshima K., Namba S.. 2006b; Diversity and functional importance of phytoplasma membrane proteins. Trends Microbiol14:254–256 [CrossRef]
    [Google Scholar]
  21. Kakizawa S., Oshima K., Ishii Y., Hoshi A., Maejima K., Jung H. Y., Yamaji Y., Namba S.. 2009; Cloning of immunodominant membrane protein genes of phytoplasmas and their in planta expression. FEMS Microbiol Lett293:92–101 [CrossRef][PubMed]
    [Google Scholar]
  22. Kato K., Ishiwa A.. 2015; The role of carbohydrates in infection strategies of enteric pathogens. Trop Med Health43:41–52 [CrossRef][PubMed]
    [Google Scholar]
  23. Killiny N., Castroviejo M., Saillard C.. 2005; Spiroplasma citri spiralin acts in vitro as a lectin binding to glycoproteins from its insect vector circulifer haematoceps. Phytopathology95:541–548 [CrossRef][PubMed]
    [Google Scholar]
  24. Kube M., Schneider B., Kuhl H., Dandekar T., Heitmann K., Migdoll A. M., Reinhardt R., Seemüller E.. 2008; The linear chromosome of the plant-pathogenic mycoplasma Candidatus Phytoplasma mali'. BMC Genomics9:306 [CrossRef][PubMed]
    [Google Scholar]
  25. Le Gall F., Bove J. M., Garnier M.. 1998; Engineering of a single-chain variable-fragment (scFv) antibody specific for the stolbur phytoplasma (Mollicute) and its expression in Escherichia coli and tobacco plants. Appl Environ Microbiol64:4566–4572[PubMed]
    [Google Scholar]
  26. Liefting L. W., Kirkpatrick B. C.. 2003; Cosmid cloning and sample sequencing of the genome of the uncultivable mollicute, Western X-disease phytoplasma, using DNA purified by pulsed-field gel electrophoresis. FEMS Microbiol Lett221:203–211 [CrossRef][PubMed]
    [Google Scholar]
  27. Lin X., Kim Y. A., Lee B. L., Söderhäll K., Söderhäll I.. 2009; Identification and properties of a receptor for the invertebrate cytokine astakine, involved in hematopoiesis. Exp Cell Res315:1171–1180 [CrossRef][PubMed]
    [Google Scholar]
  28. Martinez L. O., Jacquet S., Esteve J. P., Rolland C., Cabezón E., Champagne E., Pineau T., Georgeaud V., Walker J. E. et al. 2003; Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature421:75–79 [CrossRef][PubMed]
    [Google Scholar]
  29. Mergenthaler E., Viczián O., Fodor M., Süle S.. 2001; Isolation and expression of an immunodominant membrane protein gene of the ESFY phytoplasma for antiserum production. Acta Horticulturae550:355–360[CrossRef]
    [Google Scholar]
  30. Mori H., Ito K.. 2001; The Sec protein-translocation pathway. Trends Microbiol9:494–500 [CrossRef][PubMed]
    [Google Scholar]
  31. Morton A., Davies D. L., Blomquist C. L., Barbara D. J.. 2003; Characterization of homologues of the apple proliferation immunodominant membrane protein gene from three related phytoplasmas. Mol Plant Pathol4:109–114 [CrossRef][PubMed]
    [Google Scholar]
  32. Moser T. L., Stack M. S., Asplin I., Enghild J. J., Højrup P., Everitt L., Hubchak S., Schnaper H. W., Pizzo S. V.. 1999; Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A96:2811–2816 [CrossRef][PubMed]
    [Google Scholar]
  33. Mounsey K. E., Streten C., Gibb K. S.. 2006; Sequence characterization of four putative membrane-associated proteins from sweet potato little leaf strain V4 phytoplasma. Plant Pathol55:29–35 [CrossRef]
    [Google Scholar]
  34. Narayanasamy P.. 2011; Detection of Bacterial and Phytoplasmal pathogens. In Microbial Plant Pathogens-Detection and Disease Diagnosis: Bacterial and Phytoplasmal Pathogens vol. 2 pp.75–76 Dordrecht/Heidelberg/London/New York: Springer;
    [Google Scholar]
  35. Nejat N., Vadamalai G.. 2010; Phytoplasma detection in coconut palm and other tropical crops. Plant Pathol J9:112–121[CrossRef]
    [Google Scholar]
  36. Neriya Y., Sugawara K., Maejima K., Hashimoto M., Komatsu K., Minato N., Miura C., Kakizawa S., Yamaji Y. et al. 2011; Cloning, expression analysis, and sequence diversity of genes encoding two different immunodominant membrane proteins in poinsettia branch-inducing phytoplasma (PoiBI). FEMS Microbiol Lett324:38–47 [CrossRef][PubMed]
    [Google Scholar]
  37. Oshima K., Kakizawa S., Nishigawa H., Jung H. Y., Wei W., Suzuki S., Arashida R., Nakata D., Miyata S. et al. 2004; Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet36:27–29 [CrossRef][PubMed]
    [Google Scholar]
  38. Pacifico D., Galetto L., Rashidi M., Abbà S., Palmano S., Firrao G., Bosco D., Marzachì C.. 2015; Decreasing global transcript levels over time suggest that phytoplasma cells enter stationary phase during plant and insect colonization. Appl Environ Microbiol81:2591–2602 [CrossRef][PubMed]
    [Google Scholar]
  39. Paingankar M. S., Gokhale M. D., Deobagkar D. N.. 2010; Dengue-2-virus-interacting polypeptides involved in mosquito cell infection. Arch Virol155:1453–1461 [CrossRef][PubMed]
    [Google Scholar]
  40. Peschen D., Li H. P., Fischer R., Kreuzaler F., Liao Y. C.. 2004; Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen. Nat Biotechnol22:732–738 [CrossRef][PubMed]
    [Google Scholar]
  41. Rashidi M., Galetto L., Bosco D., Bulgarelli A., Vallino M., Veratti F., Marzachì C.. 2015; Role of the major antigenic membrane protein in phytoplasma transmission by two insect vector species. BMC Microbiol15:193 [CrossRef][PubMed]
    [Google Scholar]
  42. Siampour M., Izadpanah K., Galetto L., Salehi M., Marzachí C.. 2013; Molecular characterization, phylogenetic comparison and serological relationship of the Imp protein of several ‘Candidatus Phytoplasma aurantifolia’ strains. Plant Pathol62:452–459 [CrossRef]
    [Google Scholar]
  43. Sugio A., MacLean A. M., Kingdom H. N., Grieve V. M., Manimekalai R., Hogenhout S. A.. 2011; Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu Rev Phytopathol49:175–195 [CrossRef][PubMed]
    [Google Scholar]
  44. Suzuki S., Oshima K., Kakizawa S., Arashida R., Jung H. Y., Yamaji Y., Nishigawa H., Ugaki M., Namba S.. 2006; Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci U S A103:4252–4257 [CrossRef][PubMed]
    [Google Scholar]
  45. Tümmler B., Cornelis P.. 2005; Pyoverdine receptor: a case of positive Darwinian selection in Pseudomonas aeruginosa . J Bacteriol187:3289–3292 [CrossRef][PubMed]
    [Google Scholar]
  46. Wagner S., Klepsch M. M., Schlegel S., Appel A., Draheim R., Tarry M., Högbom M., van Wijk K. J., Slotboom D. J. et al. 2008; Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci U S A105:14371–14376 [CrossRef][PubMed]
    [Google Scholar]
  47. Yu Y. L., Yeh K. W., Lin C. P.. 1998; An antigenic protein gene of a phytoplasma associated with sweet potato witches' broom. Microbiology144:1257–1262 [CrossRef][PubMed]
    [Google Scholar]
  48. Yu J., Wayadande A. C., Fletcher J.. 2000; Spiroplasma citri surface protein P89 implicated in adhesion to cells of the vector circulifer tenellus. Phytopathology90:716–722 [CrossRef][PubMed]
    [Google Scholar]
  49. Zalewska M., Kochman A., Estève J. P., Lopez F., Chaoui K., Susini C., Ozyhar A., Kochman M.. 2009; Juvenile hormone binding protein trafficinteraction with ATP synthase and lipid transfer proteins. Biochim Biophys Acta1788:1695–1705 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000331
Loading
/content/journal/micro/10.1099/mic.0.000331
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error