1887

Abstract

The genome encodes many of the known components of divisome as well as four sets of genome partitioning proteins, ParA and ParB on its multipartite genome. Interdependent regulation of cell division and genome segregation is not understood. interactions of sdivisome, segrosome and other cell division regulatory proteins expressed on multicopy plasmids were studied in using a bacterial two-hybrid system and confirmed by co-immunoprecipitation with the proteins made in . Many of these showed interactions both with the self and with other proteins. For example, DrFtsA, DrFtsZ, DrMinD, DrMinC, DrDivIVA and all four ParB proteins individually formed at least homodimers, while DrFtsA interacted with DrFtsZ, DrFtsW, DrFtsE, DrFtsK and DrMinD. DrMinD also showed interaction with DrFtsW, DrFtsE and DrMinC. Interestingly, septum site determining protein, DrDivIVA showed interactions with secondary genome ParAs as well as ParB1, ParB3 and ParB4 while DrMinC interacted with ParB1 and ParB3. PprA, a pleiotropic protein recently implicated in cell division regulation, neither interacted with divisome proteins nor ParBs but interacted at different levels with all four ParAs. These results suggest the formation of independent multiprotein complexes of ‘DrFts’ proteins, segrosome proteins and cell division regulatory proteins, and these complexes could interact with each other through DrMinC and DrDivIVA, and PprA in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000330
2016-08-01
2022-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/8/1321.html?itemId=/content/journal/micro/10.1099/mic.0.000330&mimeType=html&fmt=ahah

References

  1. Autret S., Errington J. 2003; A role for division-site-selection protein MinD in regulation of internucleoid jumping of Soj (ParA) protein in Bacillus subtilis. Mol Microbiol 47:159–169 [View Article][PubMed]
    [Google Scholar]
  2. Bailey M. W., Bisicchia P., Warren B. T., Sherratt D. J., Männik J. 2014; Evidence for divisome localization mechanisms independent of the Min system and SlmA in Escherichia coli. PLoS Genet 10:e1004504 [View Article][PubMed]
    [Google Scholar]
  3. Baronian G., Ginda K., Berry L., Cohen-Gonsaud M., Zakrzewska-Czerwińska J., Jakimowicz D., Molle V. 2015; Phosphorylation of Mycobacterium tuberculosis ParB participates in regulating the ParABS chromosome segregation system. PLoS One 10:e0119907 [View Article][PubMed]
    [Google Scholar]
  4. Battesti A., Bouveret E. 2012; The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods 58:325–334 [View Article][PubMed]
    [Google Scholar]
  5. Battista J. R., Park M. J., McLemore A. E. 2001; Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 43:133–139 [View Article][PubMed]
    [Google Scholar]
  6. Bigot S., Sivanathan V., Possoz C., Barre F. X., Cornet F. 2007; FtsK, a literate chromosome segregation machine. Mol Microbiol 64:1434–1441 [View Article][PubMed]
    [Google Scholar]
  7. Buddelmeijer N., Beckwith J. 2002; Assembly of cell division proteins at the E. coli cell center. Curr Opin Microbiol 5:553–557 [View Article][PubMed]
    [Google Scholar]
  8. Charaka V. K., Misra H. S. 2012; Functional characterization of the role of the chromosome I partitioning system in genome segregation in Deinococcus radiodurans. J Bacteriol 194:5739–5748 [View Article][PubMed]
    [Google Scholar]
  9. Cho H., McManus H. R., Dove S. L., Bernhardt T. G. 2011; Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist. Proc Natl Acad Sci U S A 108:3773–3778 [View Article][PubMed]
    [Google Scholar]
  10. Conti J., Viola M. G., Camberg J. L. 2015; The bacterial cell division regulators MinD and MinC form polymers in the presence of nucleotide. FEBS Lett 589:201–206 [View Article][PubMed]
    [Google Scholar]
  11. Devigne A., Mersaoui S., Bouthier-de-la-Tour C., Sommer S., Servant P. 2013; The PprA protein is required for accurate cell division of γ-irradiated Deinococcus radiodurans bacteria. DNA Repair 12:265–272 [View Article][PubMed]
    [Google Scholar]
  12. Devigne A., Guerin P., Lisboa J., Quevillon-Cheruel S., Armengaud J., Sommer S., Bouthier de la Tour C., Servanta P. 2016; PprA protein is involved in chromosome segregation via its physical and functional interaction with DNA gyrase in irradiated Deinococcus radiodurans bacteria. Mol Biol Physiol 1:e0003615
    [Google Scholar]
  13. Di Lallo G., Fagioli M., Barionovi D., Ghelardini P., Paolozzi L. 2003; Use of a two-hybrid assay to study the assembly of a complex multicomponent protein machinery: bacterial septosome differentiation. Microbiology 149:3353–3359 [View Article][PubMed]
    [Google Scholar]
  14. Donovan C., Sieger B., Krämer R., Bramkamp M. 2012; A synthetic Escherichia coli system identifies a conserved origin tethering factor in Actinobacteria. Mol Microbiol 84:105–116 [View Article][PubMed]
    [Google Scholar]
  15. Ebersbach G., Gerdes K. 2001; The double par locus of virulence factor pB171: DNA segregation is correlated with oscillation of ParA. Proc Natl Acad Sci U S A 98:15078–15083 [View Article][PubMed]
    [Google Scholar]
  16. Fogel M. A., Waldor M. K. 2006; A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev 20:3269–3282 [View Article][PubMed]
    [Google Scholar]
  17. Gerdes K., Howard M., Szardenings F. 2010; Pushing and pulling in prokaryotic DNA segregation. Cell 141:927–942 [View Article][PubMed]
    [Google Scholar]
  18. Ghosal D., Trambaiolo D., Amos L. A., Löwe J. 2014; MinCD cell division proteins form alternating copolymeric cytomotive filaments. Nat Commun 5:5341 [View Article][PubMed]
    [Google Scholar]
  19. Ginda K., Bezulska M., Ziółkiewicz M., Dziadek J., Zakrzewska-Czerwińska J., Jakimowicz D. 2013; ParA of Mycobacterium smegmatis co-ordinates chromosome segregation with the cell cycle and interacts with the polar growth determinant DivIVA. Mol Microbiol 87:998–1012 [View Article][PubMed]
    [Google Scholar]
  20. Goehring N. W., Gonzalez M. D., Beckwith J. 2006; Premature targeting of cell division proteins to midcell reveals hierarchies of protein interactions involved in divisome assembly. Mol Microbiol 61:33–45 [View Article][PubMed]
    [Google Scholar]
  21. Gonzalez M. D., Beckwith J. 2009; Divisome under construction: distinct domains of the small membrane protein FtsB are necessary for interaction with multiple cell division proteins. J Bacteriol 191:2815–2825 [View Article][PubMed]
    [Google Scholar]
  22. Green M. R., Sambrook J. 2012 Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  23. Harris D. R., Tanaka M., Saveliev S. V., Jolivet E., Earl A. M., Cox M., Battista J. R. 2004; Correction: preserving genome integrity: the DdrA protein of Deinococcus radiodurans R1. PLoS Biol 4:e385
    [Google Scholar]
  24. Ip S. C., Bregu M., Barre F. X., Sherratt D. J. 2003; Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination. EMBO J 22:6399–6407 [View Article][PubMed]
    [Google Scholar]
  25. Karimova G., Pidoux J., Ullmann A., Ladant D. 1998; A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756 [View Article][PubMed]
    [Google Scholar]
  26. Karimova G., Ullmann A., Ladant D. 2001; Protein-protein interaction between Bacillus stearothermophilus tyrosyl-tRNA synthetase subdomains revealed by a bacterial two-hybrid system. J Mol Microbiol Biotechnol 3:73–82[PubMed]
    [Google Scholar]
  27. Karimova G., Dautin N., Ladant D. 2005; Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187:2233–2243 [View Article][PubMed]
    [Google Scholar]
  28. Kota S., Charaka V. K., Misra H. S. 2014a; PprA, a pleiotropic protein for radioresistance, works through DNA gyrase and shows cellular dynamics during postirradiation recovery in Deinococcus radiodurans. J Genet 93:349–354 [View Article][PubMed]
    [Google Scholar]
  29. Kota S., Charaka V. K., Ringgaard S., Waldor M. K., Misra H. S. 2014b; PprA contributes to Deinococcus radiodurans resistance to nalidixic acid, genome maintenance after DNA damage and interacts with deinococcal topoisomerases. PLoS One 9:e85288 [View Article][PubMed]
    [Google Scholar]
  30. Kota S., Rajpurohit Y. S., Charaka V. K., Satoh K., Narumi I., Misra H. S. 2016; DNA gyrase of Deinococcus radiodurans is characterized as Type II bacterial topoisomerase and its activity is differentially regulated by PprA in vitro. Extremophiles 20:195–205 [View Article][PubMed]
    [Google Scholar]
  31. Laloux G., Jacobs-Wagner C. 2014; How do bacteria localize proteins to the cell pole?. J Cell Sci 127:11–19 [View Article][PubMed]
    [Google Scholar]
  32. Lenarcic R., Halbedel S., Visser L., Shaw M., Wu L. J., Errington J., Marenduzzo D., Hamoen L. W. 2009; Localisation of DivIVA by targeting to negatively curved membranes. EMBO J 28:2272–2282 [View Article][PubMed]
    [Google Scholar]
  33. Lutkenhaus J. 2007; Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu Rev Biochem 76:539–562 [View Article][PubMed]
    [Google Scholar]
  34. Marston A. L., Thomaides H. B., Edwards D. H., Sharpe M. E., Errington J. 1998; Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 12:3419–3430 [View Article][PubMed]
    [Google Scholar]
  35. Massey T. H., Aussel L., Barre F. X., Sherratt D. J. 2004; Asymmetric activation of Xer site-specific recombination by FtsK. EMBO Rep 5:399–404 [View Article][PubMed]
    [Google Scholar]
  36. Massey T. H., Mercogliano C. P., Yates J., Sherratt D. J., Löwe J. 2006; Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. Mol Cell 23:457–469 [View Article][PubMed]
    [Google Scholar]
  37. Minton K. W. 1994; DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 13:9–15 [View Article][PubMed]
    [Google Scholar]
  38. Misra H., Rajpurohit Y. S., Kota S. 2013; Physiological and molecular basis of extreme radioresistance in Deinococcus radiodurans. Curr Sci 104:194–206
    [Google Scholar]
  39. Modi K., Misra H. S. 2014; Dr-FtsA, an actin homologue in Deinococcus radiodurans differentially affects Dr-FtsZ and Ec-FtsZ functions in vitro. PLoS One 9:e115918 [View Article][PubMed]
    [Google Scholar]
  40. Modi K. M., Tewari R., Misra H. S. 2014; FtsZDr, a tubulin homologue in radioresistant bacterium Deinococcus radiodurans is characterized as a GTPase exhibiting polymerization/depolymerization dynamics in vitro and FtsZ ring formation in vivo. Int J Biochem Cell Biol 50:38–46 [View Article][PubMed]
    [Google Scholar]
  41. Mohl D. A., Easter J., Gober J. W. 2001; The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol Microbiol 42:741–755 [View Article][PubMed]
    [Google Scholar]
  42. Narumi I., Satoh K., Cui S., Funayama T., Kitayama S., Watanabe H. 2004; PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol 54:278–285 [View Article][PubMed]
    [Google Scholar]
  43. Rajpurohit Y. S., Misra H. S. 2010; Characterization of a DNA damage-inducible membrane protein kinase from Deinococcus radiodurans and its role in bacterial radioresistance and DNA strand break repair. Mol Microbiol 77:1470–1482 [View Article][PubMed]
    [Google Scholar]
  44. Rajpurohit Y. S., Misra H. S. 2013; Structure-function study of deinococcal serine/threonine protein kinase implicates its kinase activity and DNA repair protein phosphorylation roles in radioresistance of Deinococcus radiodurans. Int J Biochem Cell Biol 45:2541–2552 [View Article][PubMed]
    [Google Scholar]
  45. Ringgaard S., Schirner K., Davis B. M., Waldor M. K. 2011; A family of ParA-like ATPases promotes cell pole maturation by facilitating polar localization of chemotaxis proteins. Genes Dev 25:1544–1555 [View Article][PubMed]
    [Google Scholar]
  46. Robichon C., Karimova G., Beckwith J., Ladant D. 2011; Role of leucine zipper motifs in association of the Escherichia coli cell division proteins FtsL and FtsB. J Bacteriol 193:4988–4992 [View Article][PubMed]
    [Google Scholar]
  47. Salje J., Gayathri P., Löwe J. 2010; The ParMRC system: molecular mechanisms of plasmid segregation by actin-like filaments. Nat Rev Microbiol 8:683–692 [View Article][PubMed]
    [Google Scholar]
  48. Schäfer M., Schmitz C., Facius R., Horneck G., Milow B., Funken K. H., Ortner J. 2000; Systematic study of parameters influencing the action of Rose Bengal with visible light on bacterial cells: comparison between the biological effect and singlet-oxygen production. Photochem Photobiol 71:514–523 [View Article][PubMed]
    [Google Scholar]
  49. Schumacher M. A., Piro K. M., Xu W. 2010; Insight into F plasmid DNA segregation revealed by structures of SopB and SopB-DNA complexes. Nucleic Acids Res 38:4514–4526 [View Article][PubMed]
    [Google Scholar]
  50. Shebelut C. W., Guberman J. M., van Teeffelen S., Yakhnina A. A., Gitai Z. 2010; Caulobacter chromosome segregation is an ordered multistep process. Proc Natl Acad Sci U S A 107:14194–14198 [View Article][PubMed]
    [Google Scholar]
  51. Shen B., Lutkenhaus J. 2011; Differences in MinC/MinD sensitivity between polar and internal Z rings in Escherichia coli. J Bacteriol 193:367–376 [View Article][PubMed]
    [Google Scholar]
  52. Sieger B., Bramkamp M. 2015; Interaction sites of DivIVA and RodA from Corynebacterium glutamicum. Front Microbiol 5:738 [View Article][PubMed]
    [Google Scholar]
  53. Slade D., Radman M. 2011; Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75:133–191 [View Article][PubMed]
    [Google Scholar]
  54. Thanbichler M. 2010; Synchronization of chromosome dynamics and cell division in bacteria. Cold Spring Harb Perspect Biol 2:a000331 [View Article]
    [Google Scholar]
  55. Thomaides H. B., Freeman M., El Karoui M., Errington J. 2001; Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev 15:1662–1673 [View Article][PubMed]
    [Google Scholar]
  56. Tonthat N. K., Arold S. T., Pickering B. F., Van Dyke M. W., Liang S., Lu Y., Beuria T. K., Margolin W., Schumacher M. A. 2011; Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check. EMBO J 30:154–164 [View Article][PubMed]
    [Google Scholar]
  57. Treuner-Lange A., Søgaard-Andersen L. 2014; Regulation of cell polarity in bacteria. J Cell Biol 206:7–17 [View Article][PubMed]
    [Google Scholar]
  58. Vecchiarelli A. G., Han Y. W., Tan X., Mizuuchi M., Ghirlando R., Biertümpfel C., Funnell B. E., Mizuuchi K. 2010; ATP control of dynamic P1 ParA-DNA interactions: a key role for the nucleoid in plasmid partition. Mol Microbiol 78:78–91 [View Article][PubMed]
    [Google Scholar]
  59. Vicente M., Rico A. I. 2006; The order of the ring: assembly of Escherichia coli cell division components. Mol Microbiol 61:5–8 [View Article][PubMed]
    [Google Scholar]
  60. Vicente M., García-Ovalle M. 2007; Making a point: the role of DivIVA in streptococcal polar anatomy. J Bacteriol 189:1185–1188 [View Article][PubMed]
    [Google Scholar]
  61. White O., Eisen J. A., Heidelberg J. F., Hickey E. K., Peterson J. D., Dodson R. J., Haft D. H., Gwinn M. L., Nelson W. C. et al. 1999; Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000330
Loading
/content/journal/micro/10.1099/mic.0.000330
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error