1887

Abstract

A metabolite profiling approach has been implemented to elucidate metabolic adaptation at set culture conditions in five species (two fast- and three slow-growing) with the potential to act as model organisms for ). Analysis has been performed over designated growth phases and under representative environments (nutrient and oxygen depletion) experienced by during infection. The procedure was useful in determining a range of metabolites (60–120 compounds) covering nucleotides, amino acids, organic acids, saccharides, fatty acids, glycerols, -esters, -phosphates and isoprenoids. Among these classes of compounds, key biomarker metabolites, which can act as indicators of pathway/process activity, were identified. In numerous cases, common metabolite traits were observed for all five species across the experimental conditions (e.g. uracil indicating DNA repair). Amino acid content, especially glutamic acid, highlighted the different properties between the fast- and slow-growing mycobacteria studied (e.g. nitrogen assimilation). The greatest similarities in metabolite composition between fast- and slow-growing mycobacteria were apparent under hypoxic conditions. A comparison to previously reported transcriptomic data revealed a strong correlation between changes in transcription and metabolite content. Collectively, these data validate the changes in the transcription at the metabolite level, suggesting transcription exists as one of the predominant modes of cellular regulation in . Sectors with restricted correlation between metabolites and transcription (e.g. hypoxic cultivation) warrant further study to elucidate and exploit post-transcriptional modes of regulation. The strong correlation between the laboratory conditions used and data derived from conditions, indicate that the approach applied is a valuable addition to our understanding of cell regulation in these species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000325
2016-08-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/8/1456.html?itemId=/content/journal/micro/10.1099/mic.0.000325&mimeType=html&fmt=ahah

References

  1. Amon J., Titgemeyer F., Burkovski A.. 2009; A genomic view on nitrogen metabolism and nitrogen control in mycobacteria. J Mol Microbiol Biotechnol17:20–29 [CrossRef][PubMed]
    [Google Scholar]
  2. Archuleta R. J., Yvonne Hoppes P., Primm T. P.. 2005; Mycobacterium avium enters a state of metabolic dormancy in response to starvation. Tuberculosis85:147–158 [CrossRef][PubMed]
    [Google Scholar]
  3. Bacon J., Alderwick L. J., Allnutt J. A., Gabasova E., Watson R., Hatch K. A., Clark S. O., Jeeves R. E., Marriott A. et al. 2014; Non-replicating Mycobacterium tuberculosis elicits a reduced infectivity profile with corresponding modifications to the cell wall and extracellular matrix. PLoS One9:e87329 [CrossRef][PubMed]
    [Google Scholar]
  4. Barry I. I. I. C. E.. 2001; Mycobacterium smegmatis: an absurd model for tuberculosis?. Trends Microbiol9:473–474 [CrossRef]
    [Google Scholar]
  5. Betts J. C., Lukey P. T., Robb L. C., McAdam R. A., Duncan K.. 2002; Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol43:717–731 [CrossRef][PubMed]
    [Google Scholar]
  6. Boshoff H. I., Lun D. S.. 2010; Systems biology approaches to understanding mycobacterial survival mechanisms. Drug Discov Today: Dis Mech7:e75e82 [CrossRef][PubMed]
    [Google Scholar]
  7. Chao M. C., Rubin E. J.. 2010; Letting sleeping dos lie: does dormancy play a role in tuberculosis?. Annu Rev Microbiol64:293–311 [CrossRef][PubMed]
    [Google Scholar]
  8. Cossu A., Sechi L. A., Zanetti S., Rosu V.. 2012; Gene expression profiling of Mycobacterium avium subsp . paratuberculosis in simulated multi-stress conditions and within THP-1 cells reveals a new kind of interactive intramacrophage behaviour. BMC Microbiol12:87 [CrossRef][PubMed]
    [Google Scholar]
  9. Crellin P. K., Luo C. -Y., Morita Y. S.. 2013; Metabolism of plasma membrane lipids in mycobacteria and corynebacteria. In Lipid Metabolism , pp.119–148 Edited by Baez P. R. V..
    [Google Scholar]
  10. Cunningham A. F., Spreadbury C. L.. 1998; Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton alpha-crystallin homolog. J Bacteriol180:801–808[PubMed]
    [Google Scholar]
  11. Dhiman R. K., Mahapatra S., Slayden R. A., Boyne M. E., Lenaerts A., Hinshaw J. C., Angala S. K., Chatterjee D., Biswas K. et al. 2009; Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence. Mol Microbiol72:85–97 [CrossRef][PubMed]
    [Google Scholar]
  12. Drapal M., Perez-Fons L., Wheeler P. R., Fraser P. D.. 2014; The application of metabolite profiling to Mycobacterium spp.: determination of metabolite changes associated with growth. J Microbiol Methods106:23–32 [CrossRef][PubMed]
    [Google Scholar]
  13. Eoh H., Rhee K. Y.. 2013; Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis . Proc Natl Acad Sci U S A110:6554–6559 [CrossRef][PubMed]
    [Google Scholar]
  14. Gago G., Diacovich L., Arabolaza A., Tsai S. C., Gramajo H.. 2011; Fatty acid biosynthesis in actinomycetes. FEMS Microbiol Rev35:475–497 [CrossRef][PubMed]
    [Google Scholar]
  15. Garton N. J., Christensen H., Minnikin D. E., Adegbola R. A., Barer M. R.. 2002; Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology148:2951–2958 [CrossRef][PubMed]
    [Google Scholar]
  16. Hampshire T., Soneji S., Bacon J., James B. W., Hinds J., Laing K., Stabler R. A., Marsh P. D., Butcher P. D.. 2004; Stationary phase gene expression of Mycobacterium tuberculosis following a progressive nutrient depletion: a model for persistent organisms?. Tuberculosis84:228–238 [CrossRef][PubMed]
    [Google Scholar]
  17. Harrigan G. G., Goodacre R.. 2003; Introduction. In Metabolic Profiling - Its Role in Biomarker Discovery and Gene Function Analysis pp.1–9 Edited by Harrigan G. G., Goodacre R.. United States of America: Kluwer Academic Publishers;[CrossRef]
    [Google Scholar]
  18. Harth G., Horwitz M. A.. 1999; An inhibitor of exported Mycobacterium tuberculosis glutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets. J Exp Med189:1425–1436[PubMed][CrossRef]
    [Google Scholar]
  19. Jones M. O., Perez-Fons L., Robertson F. P., Bramley P. M., Fraser P. D.. 2013; Functional characterization of long-chain prenyl diphosphate synthases from tomato. Biochem J449:729–740 [CrossRef][PubMed]
    [Google Scholar]
  20. Kanehisa M., Goto S., Hattori M., Aoki-Kinoshita K. F., Itoh M., Kawashima S., Katayama T., Araki M., Hirakawa M.. 2006; From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res34:D354–357 [CrossRef][PubMed]
    [Google Scholar]
  21. Lee P. C., Salomon C., Mijts B., Schmidt-Dannert C.. 2008; Biosynthesis of ubiquinone compounds with conjugated prenyl side chains. Appl Environ Microbiol74:6908–6917 [CrossRef][PubMed]
    [Google Scholar]
  22. Low K. L., Rao P. S., Shui G., Bendt A. K., Pethe K., Dick T., Wenk M. R.. 2009; Triacylglycerol utilization is required for regrowth of in vitro hypoxic nonreplicating Mycobacterium bovis bacillus Calmette- Guerin. J Bacteriol191:5037–5043 [CrossRef][PubMed]
    [Google Scholar]
  23. Mathew R., Kruthiventi A. K., Prasad J. V., Kumar S. P., Srinu G., Chatterji D.. 2010; Inhibition of mycobacterial growth by plumbagin derivatives. Chem Biol Drug Des76:34–42 [CrossRef][PubMed]
    [Google Scholar]
  24. Mora L., Bramley P. M., Fraser P. D.. 2013; Development and optimisation of a label-free quantitative proteomic procedure and its application in the assessment of genetically modified tomato fruit. Proteomics13:2016–2030 [CrossRef][PubMed]
    [Google Scholar]
  25. Nogueira M., Mora L., Enfissi E. M., Bramley P. M., Fraser P. D.. 2013; Subchromoplast sequestration of carotenoids affects regulatory mechanisms in tomato lines expressing different carotenoid gene combinations. Plant Cell25:4560–4579 [CrossRef][PubMed]
    [Google Scholar]
  26. Rafidinarivo E., Lanéelle M. A., Montrozier H., Valero-Guillén P., Astola J., Luquin M., Promé J. C., Daffé M.. 2009; Trafficking pathways of mycolic acids: structures, origin, mechanism of formation, and storage form of mycobacteric acids. J Lipid Res50:477–490 [CrossRef][PubMed]
    [Google Scholar]
  27. Robertson F. P., Koistinen P. K., Gerrish C., Halket J. M., Patel R. K., Fraser P. D., Bramley P. M.. 2012; Proteome changes in tomato lines transformed with phytoene synthase-1 in the sense and antisense orientations. J Exp Bot63:6035–6043 [CrossRef][PubMed]
    [Google Scholar]
  28. Russell D. G., VanderVen B. C., Lee W., Abramovitch R. B., Kim M. J., Homolka S., Niemann S., Rohde K. H.. 2010; Mycobacterium tuberculosis wears what it eats. Cell Host Microbe8:68–76 [CrossRef][PubMed]
    [Google Scholar]
  29. Sassetti C. M., Rubin E. J.. 2003; Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A100:12989–12994 [CrossRef][PubMed]
    [Google Scholar]
  30. Sassetti C. M., Boyd D. H., Rubin E. J.. 2003; Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol48:77–84 [CrossRef][PubMed]
    [Google Scholar]
  31. Selishcheva A. A., Sorokoumova G. M., Nazarova E. V.. 2012; Lipid surrounding of mycobacteria: lethal and resuscitating effects. In Understanding Tuberculosis–Deciphering the Secret Life of the Bacilli pp.239–256 . Edited by Cardona. P.-J.. InTech;
    [Google Scholar]
  32. Shi L., Sohaskey C. D., Pfeiffer C., Datta P., Parks M., McFadden J., North R. J., Gennaro M. L.. 2010; Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol Microbiol78:1199–1215 [CrossRef][PubMed]
    [Google Scholar]
  33. Singhal A., Arora G., Sajid A., Maji A., Bhat A., Virmani R., Upadhyay S., Nandicoori V. K., Sengupta S. et al. 2013; Regulation of homocysteine metabolism by Mycobacterium tuberculosis S-adenosylhomocysteine hydrolase. Sci Rep3:2264 [CrossRef][PubMed]
    [Google Scholar]
  34. Smeulders M. J., Keer J., Speight R. A., Williams H. D.. 1999; Adaptation of Mycobacterium smegmatis to stationary phase. J Bacteriol181:270–283[PubMed]
    [Google Scholar]
  35. Stehr M., Elamin A. A., Singh M.. 2013; Lipid inclusions in mycobacterial infections. In Tuberculosis–Current Issues in Diagnosis and Management Edited by Mahboub B.. InTech;
    [Google Scholar]
  36. Venkatesh J., Kumar P., Krishna P. S., Manjunath R., Varshney U.. 2003; Importance of uracil DNA glycosylase in Pseudomonas aeruginosa and Mycobacterium smegmatis, G+C-rich bacteria, in mutation prevention, tolerance to acidified nitrite, and endurance in mouse macrophages. J Biol Chem278:24350–24358 [CrossRef][PubMed]
    [Google Scholar]
  37. Walker R. W., Barakat H., Hung J. G.. 1970; The positional distribution of fatty acids in the phospholipids and triglycerides of Mycobacterium smegmatis and M. bovis BCG. Lipids5:684–691 [CrossRef][PubMed]
    [Google Scholar]
  38. Wang R., Prince J. T., Marcotte E. M.. 2005; Mass spectrometry of the M . smegmatis proteome: protein expression levels correlate with function, operons, and codon bias. Genome Res15:1118–1126 [CrossRef][PubMed]
    [Google Scholar]
  39. Wayne L. G., Hayes L. G.. 1996; An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun64:2062–2069[PubMed]
    [Google Scholar]
  40. Wayne L. G., Sohaskey C. D.. 2001; Nonreplicating persistence of Mycobacterium tuberculosis . Annu Rev Microbiol55:139–163 [CrossRef][PubMed]
    [Google Scholar]
  41. Zeng L., Shi T., Zhao Q., Xie J.. 2013; Mycobacterium sulfur metabolism and implications for novel drug targets. Cell Biochem Biophys65:77–83 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000325
Loading
/content/journal/micro/10.1099/mic.0.000325
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error