1887

Abstract

Aspiration of bile into the cystic fibrosis (CF) lung has emerged as a prognostic factor for reduced microbial lung biodiversity and the establishment of often fatal, chronic pathogen infections. Staphylococcus aureus is one of the earliest pathogens detected in the lungs of children with CF, and once established as a chronic infection, strategies for its eradication become limited. Several lung pathogens are stimulated to produce biofilms in vitro in the presence of bile. In this study, we further investigated the effects of bile on S. aureus biofilm formation. Most clinical S. aureus strains and the laboratory strain RN4220 were stimulated to form biofilms with sub-inhibitory concentrations of bovine bile. Additionally, we observed bile-induced sensitivity to aminoglycosides, which we exploited in a bursa aurealis transposon screen to isolate mutants reduced in aminoglycoside sensitivity and augmented in bile-induced biofilm formation. We identified five mutants that exhibited hypersensitivity to bile with respect to bile-induced biofilm formation, three of which carried transposon insertions within gene clusters involved in wall teichoic acid (WTA) biosynthesis or transport. Strain TM4 carried an insertion between the divergently oriented tagH and tagG genes, which encode the putative WTA membrane translocation apparatus. Ectopic expression of tagG in TM4 restored a wild-type bile-induced biofilm response, suggesting that reduced translocation of WTA in TM4 induced sensitivity to bile and enhanced the bile-induced biofilm formation response. We propose that WTA may be important for protecting S. aureus against exposure to bile and that bile-induced biofilm formation may be an evolved response to protect cells from bile-induced cell lysis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000317
2016-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/8/1398.html?itemId=/content/journal/micro/10.1099/mic.0.000317&mimeType=html&fmt=ahah

References

  1. Aseeri A. , Brodlie M. , Lordan J. , Corris P. , Pearson J. , Ward C. , Manning N. . ( 2012;). Bile acids are present in the lower airways of people with cystic fibrosis. . Am J Respir Crit Care Med 185: 463. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baba T. , Takeuchi F. , Kuroda M. , Yuzawa H. , Aoki K. , Oguchi A. , Nagai Y. , Iwama N. , Asano K. et al. ( 2002;). Genome and virulence determinants of high virulence community-acquired MRSA. . Lancet 359: 1819–1827. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bae T. , Banger A. K. , Wallace A. , Glass E. M. , Aslund F. , Schneewind O. , Missiakas D. M. . ( 2004;). Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. . Proc Natl Acad Sci U S A 101: 12312–12317. [CrossRef] [PubMed]
    [Google Scholar]
  4. Begley M. , Gahan C. G. , Hill C. . ( 2005;). The interaction between bacteria and bile. . FEMS Microbiol Rev 29: 625–651. [CrossRef] [PubMed]
    [Google Scholar]
  5. Brown S. , Santa Maria J. P. , Walker S. . ( 2013;). Wall teichoic acids of gram-positive bacteria. . Annu Rev Microbiol 67: 313–336. [CrossRef] [PubMed]
    [Google Scholar]
  6. Button B. M. , Roberts S. , Kotsimbos T. C. , Levvey B. J. , Williams T. J. , Bailey M. , Snell G. I. , Wilson J. W. . ( 2005;). Gastroesophageal reflux (symptomatic and silent): a potentially significant problem in patients with cystic fibrosis before and after lung transplantation. . J Heart Lung Transplant 24: 1522–1529. [CrossRef] [PubMed]
    [Google Scholar]
  7. Campbell J. , Singh A. K. , Swoboda J. G. , Gilmore M. S. , Wilkinson B. J. , Walker S. . ( 2012;). An antibiotic that inhibits a late step in wall teichoic acid biosynthesis induces the cell wall stress stimulon in Staphylococcus aureus . . Antimicrob Agents Chemother 56: 1810–1820. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chua K. , Seemann T. , Harrison P. F. , Davies J. K. , Coutts S. J. , Chen H. , Haring V. , Moore R. , Howden B. P. et al. ( 2010;). Complete genome sequence of Staphylococcus aureus strain JKD6159, a unique Australian clone of ST93-IV community methicillin-resistant Staphylococcus aureus . . J Bacteriol 192: 5556–5557. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cooper M. A. , Shlaes D. . ( 2011;). Fix the antibiotics pipeline. . Nature 472: 32. [CrossRef] [PubMed]
    [Google Scholar]
  10. D’Ovidio F. , Mura M. , Tsang M. , Waddell T. K. , Hutcheon M. A. , Singer L. G. , Hadjiliadis D. , Chaparro C. , Gutierrez C. et al. ( 2005a;). Bile acid aspiration and the development of bronchiolitis obliterans after lung transplantation. . J Thorac Cardiovasc Surg 129: 1144–1152. [CrossRef]
    [Google Scholar]
  11. D’Ovidio F. , Singer L. G. , Hadjiliadis D. , Pierre A. , Waddell T. K. , de Perrot M. , Hutcheon M. , Miller L. , Darling G. et al. ( 2005b;). Prevalence of gastroesophageal reflux in end-stage lung disease candidates for lung transplant. . Ann Thorac Surg 80: 1254–1260. [CrossRef]
    [Google Scholar]
  12. Dengler V. , Meier P. S. , Heusser R. , Kupferschmied P. , Fazekas J. , Friebe S. , Staufer S. B. , Majcherczyk P. A. , Moreillon P. et al. ( 2012;). Deletion of hypothetical wall teichoic acid ligases in Staphylococcus aureus activates the cell wall stress response. . FEMS Microbiol Lett 333: 109–120. [CrossRef] [PubMed]
    [Google Scholar]
  13. el-Serag H. B. , Sonnenberg A. . ( 1997;). Associations between different forms of gastro-oesophageal reflux disease. . Gut 41: 594–599. [CrossRef] [PubMed]
    [Google Scholar]
  14. Elkins C. A. , Mullis L. B. . ( 2004;). Bile-mediated aminoglycoside sensitivity in Lactobacillus species likely results from increased membrane permeability attributable to cholic acid. . Appl Environ Microbiol 70: 7200–7209. [CrossRef] [PubMed]
    [Google Scholar]
  15. Fey P. D. , Endres J. L. , Yajjala V. K. , Widhelm T. J. , Boissy R. J. , Bose J. L. , Bayles K. W. . ( 2013;). A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. . MBio 4: e00537-00512. [CrossRef] [PubMed]
    [Google Scholar]
  16. Flemming H. C. , Wingender J. . ( 2010;). The biofilm matrix. . Nat Rev Microbiol 8: 623–633. [CrossRef] [PubMed]
    [Google Scholar]
  17. Furukawa S. , Kuchma S. L. , O'Toole G. A. . ( 2006;). Keeping their options open: acute versus persistent infections. . J Bacteriol 188: 1211–1217. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gross M. , Cramton S. E. , Götz F. , Peschel A. . ( 2001;). Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. . Infect Immun 69: 3423–3426. [CrossRef] [PubMed]
    [Google Scholar]
  19. Holland L. M. , Conlon B. , O'Gara J. P. . ( 2011;). Mutation of tagO reveals an essential role for wall teichoic acids in Staphylococcus epidermidis biofilm development. . Microbiology 157: 408–418. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kahl B. C. . ( 2010;). Impact of Staphylococcus aureus on the pathogenesis of chronic cystic fibrosis lung disease. . Int J Med Microbiol 300: 514–519. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kreiswirth B. N. , Löfdahl S. , Betley M. J. , O'Reilly M. , Schlievert P. M. , Bergdoll M. S. , Novick R. P. . ( 1983;). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. . Nature 305: 709–712. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kristiansen T. Z. , Maitra A. , Pandey A. . ( 2007;). Proteomics of human bile. . In Proteomics of Human Body Fluids, pp. 399–414. Edited by Thongboonkerd V. . Totowa, NJ:: Humana Press;.[CrossRef]
    [Google Scholar]
  23. Lazarevic V. , Karamata D. . ( 1995;). The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. . Mol Microbiol 16: 345–355. [CrossRef] [PubMed]
    [Google Scholar]
  24. Lee C. Y. , Buranen S. L. , Ye Z. H. . ( 1991;). Construction of single-copy integration vectors for Staphylococcus aureus . . Gene 103: 101–105. [CrossRef] [PubMed]
    [Google Scholar]
  25. Legendre C. , Reen F. J. , Woods D. F. , Mooij M. J. , Adams C. , O'Gara F. . ( 2014;). Bile acids repress hypoxia-inducible factor 1 signaling and modulate the airway immune response. . Infect Immun 82: 3531–3541. [CrossRef] [PubMed]
    [Google Scholar]
  26. Malone C. L. , Boles B. R. , Lauderdale K. J. , Thoendel M. , Kavanaugh J. S. , Horswill A. R. . ( 2009;). Fluorescent reporters for Staphylococcus aureus . . J Microbiol Methods 77: 251–260. [CrossRef] [PubMed]
    [Google Scholar]
  27. Nassr A. O. , Gilani S. N. , Atie M. , Abdelhafiz T. , Connolly V. , Hickey N. , Walsh T. N. . ( 2011;). Does impaired gallbladder function contribute to the development of Barrett's esophagus and esophageal adenocarcinoma?. J Gastrointest Surg 15: 908–914. [CrossRef] [PubMed]
    [Google Scholar]
  28. Navarro J. , Rainisio M. , Harms H. K. , Hodson M. E. , Koch C. , Mastella G. , Strandvik B. , McKenzie S. G. . ( 2001;). Factors associated with poor pulmonary function: cross-sectional analysis of data from the ERCF. . Eur Respir J 18: 298–305. [CrossRef] [PubMed]
    [Google Scholar]
  29. Palm K. , Sawicki G. , Rosen R. . ( 2012;). The impact of reflux burden on Pseudomonas positivity in children with cystic fibrosis. . Pediatr Pulmonol 47: 582–587. [CrossRef] [PubMed]
    [Google Scholar]
  30. Pauwels A. , Decraene A. , Blondeau K. , Mertens V. , Farre R. , Proesmans M. , Van Bleyenbergh P. , Sifrim D. , Dupont L. J. . ( 2012;). Bile acids in sputum and increased airway inflammation in patients with cystic fibrosis. . Chest 141: 1568–1574. [CrossRef] [PubMed]
    [Google Scholar]
  31. Perng D. W. , Chang K. T. , Su K. C. , Wu Y. C. , Wu M. T. , Hsu W. H. , Tsai C. M. , Lee Y. C. . ( 2007;). Exposure of airway epithelium to bile acids associated with gastroesophageal reflux symptoms: a relation to transforming growth factor-β1 production and fibroblast proliferation. . Chest 132: 1548–1556. [CrossRef] [PubMed]
    [Google Scholar]
  32. Qian Z. , Yin Y. , Zhang Y. , Lu L. , Li Y. , Jiang Y. . ( 2006;). Genomic characterization of ribitol teichoic acid synthesis in Staphylococcus aureus: genes, genomic organization and gene duplication. . BMC Genomics 7: 74. [CrossRef] [PubMed]
    [Google Scholar]
  33. Reen F. J. , Woods D. F. , Mooij M. J. , Adams C. , O'Gara F. . ( 2012;). Respiratory pathogens adopt a chronic lifestyle in response to bile. . PLoS One 7: e45978. [CrossRef] [PubMed]
    [Google Scholar]
  34. Reen F. J. , Woods D. F. , Mooij M. J. , Chróinín M. N. , Mullane D. , Zhou L. , Quille J. , Fitzpatrick D. , Glennon J. D. et al. ( 2014;). Aspirated bile: a major host trigger modulating respiratory pathogen colonisation in cystic fibrosis patients. . Eur J Clin Microbiol Infect Dis 33: 1763–1771. [CrossRef] [PubMed]
    [Google Scholar]
  35. Schenk S. , Laddaga R. A. . ( 1992;). Improved method for electroporation of Staphylococcus aureus . . FEMS Microbiol Lett 73: 133–138.[PubMed] [CrossRef]
    [Google Scholar]
  36. Schirner K. , Stone L. K. , Walker S. . ( 2011;). ABC transporters required for export of wall teichoic acids do not discriminate between different main chain polymers. . ACS Chem Biol 6: 407–412. [CrossRef] [PubMed]
    [Google Scholar]
  37. Schneierson S. S. , Amsterdam D. . ( 1958;). Effect of bile salts upon the activity of antibiotics. . Nature 182: 56–57. [CrossRef] [PubMed]
    [Google Scholar]
  38. Schneierson S. S. , Amsterdam D. , Perlman E. L. Y. . ( 1962;). Effect of various bile salts on the anticandidal activity of amphotericin B and gentian violet and on the anti-staphylococcal activity of neomycin. . Nature 196: 909–910. [CrossRef] [PubMed]
    [Google Scholar]
  39. Shang F. , Xue T. , Sun H. , Xing L. , Zhang S. , Yang Z. , Zhang L. , Sun B. . ( 2009;). The Staphylococcus aureus GGDEF domain-containing protein, GdpS, influences protein A gene expression in a cyclic diguanylic acid-independent manner. . Infect Immun 77: 2849–2856. [CrossRef] [PubMed]
    [Google Scholar]
  40. Soldo B. , Lazarevic V. , Karamata D. . ( 2002;). tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. . Microbiology 148: 2079–2087. [CrossRef] [PubMed]
    [Google Scholar]
  41. Souza H. A. , Nogueira K. S. , Matos A. P. , Vieira R. P. , Riedi C. A. , Rosário N. A. , Telles F. Q. , Costa L. M. . ( 2006;). Early microbial colonization of cystic fibrosis patients identified by neonatal screening, with emphasis on Staphylococcus aureus . . J Pediatr 82: 377–382. [CrossRef]
    [Google Scholar]
  42. Stringer D. A. , Sprigg A. , Juodis E. , Corey M. , Daneman A. , Levison H. J. , Durie P. R. . ( 1988;). The association of cystic fibrosis, gastroesophageal reflux, and reduced pulmonary function. . Can Assoc Radiol J 39: 100–102.[PubMed]
    [Google Scholar]
  43. Sweet M. P. , Hoopes C. , Golden J. , Hays S. , Leard L. , Patti M. . ( 2006;). Prevalence of delayed gastric emptying and gastroesophageal reflux in patients with end-stage lung disease. . Ann Thorac Surg 82: 1570. [CrossRef] [PubMed]
    [Google Scholar]
  44. Sweet M. P. , Patti M. G. , Leard L. E. , Golden J. A. , Hays S. R. , Hoopes C. , Theodore P. R. . ( 2007;). Gastroesophageal reflux in patients with idiopathic pulmonary fibrosis referred for lung transplantation. . J Thorac Cardiovasc Surg 133: 1078–1084. [CrossRef]
    [Google Scholar]
  45. Sweet M. P. , Patti M. G. , Hoopes C. , Hays S. R. , Golden J. A. . ( 2009;). Gastro-oesophageal reflux and aspiration in patients with advanced lung disease. . Thorax 64: 167–173. [CrossRef]
    [Google Scholar]
  46. Swoboda J. G. , Campbell J. , Meredith T. C. , Walker S. . ( 2010;). Wall teichoic acid function, biosynthesis, and inhibition. . Chembiochem 11: 35–45. [CrossRef] [PubMed]
    [Google Scholar]
  47. van der Doef H. P. , Arets H. G. , Froeling S. P. , Westers P. , Houwen R. H. . ( 2009;). Gastric acid inhibition for fat malabsorption or gastroesophageal reflux disease in cystic fibrosis: longitudinal effect on bacterial colonization and pulmonary function. . J Pediatr 155: 629–633. [CrossRef] [PubMed]
    [Google Scholar]
  48. Vergara-Irigaray M. , Maira-Litrán T. , Merino N. , Pier G. B. , Penadés J. R. , Lasa I. . ( 2008;). Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface. . Microbiology 154: 865–877. [CrossRef] [PubMed]
    [Google Scholar]
  49. Weidenmaier C. , Kokai-Kun J. F. , Kristian S. A. , Chanturiya T. , Kalbacher H. , Gross M. , Nicholson G. , Neumeister B. , Mond J. J. et al. ( 2004;). Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. . Nat Med 10: 243–245. [CrossRef] [PubMed]
    [Google Scholar]
  50. Wertheim H. F. , Melles D. C. , Vos M. C. , van Leeuwen W. , van Belkum A. , Verbrugh H. A. , Nouwen J. L. . ( 2005;). The role of nasal carriage in Staphylococcus aureus infections. . Lancet Infect Dis 5: 751–762. [CrossRef] [PubMed]
    [Google Scholar]
  51. Wu J. C. . ( 2008;). Gastroesophageal reflux disease: an Asian perspective. . J Gastroenterol Hepatol 23: 1785–1793. [CrossRef] [PubMed]
    [Google Scholar]
  52. Wu Y. C. , Hsu P. K. , Su K. C. , Liu L. Y. , Tsai C. C. , Tsai S. H. , Hsu W. H. , Lee Y. C. , Perng D. W. . ( 2009;). Bile acid aspiration in suspected ventilator-associated pneumonia. . Chest 136: 118–124. [CrossRef] [PubMed]
    [Google Scholar]
  53. Xia G. , Kohler T. , Peschel A. . ( 2010;). The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus . . Int J Med Microbiol 300: 148–154. [CrossRef] [PubMed]
    [Google Scholar]
  54. Yokoyama K. , Miyashita T. , Araki Y. , Ito E. . ( 1986;). Structure and functions of linkage unit intermediates in the biosynthesis of ribitol teichoic acids in Staphylococcus aureus H and Bacillus subtilis W23. . Eur J Biochem 161: 479–489. [CrossRef] [PubMed]
    [Google Scholar]
  55. Zecca E. , Costa S. , Lauriola V. , Vento G. , Papacci P. , Romagnoli C. . ( 2004;). Bile acid pneumonia: a "new" form of neonatal respiratory distress syndrome?. Pediatrics 114: 269–272. [CrossRef] [PubMed]
    [Google Scholar]
  56. Zecca E. , De Luca D. , Baroni S. , Vento G. , Tiberi E. , Romagnoli C. . ( 2008;). Bile acid-induced lung injury in newborn infants: a bronchoalveolar lavage fluid study. . Pediatrics 121: e146e149. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000317
Loading
/content/journal/micro/10.1099/mic.0.000317
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error