1887

Abstract

Functional properties of cell membranes depend on their composition, particularly on the relative amount of saturated, unsaturated and polyunsaturated fatty acids present in the phospholipids. The aim of this study was to investigate the effect of cell membrane composition on cell fitness, adaptation and stress response in . To this purpose, we have deleted the genes and encoding Δ12 and ω3 desaturases in thus generating mutant strains with altered fatty acid composition of membranes. These strains were viable and able to grow in stressing conditions like hypoxia and low temperature. Deletion of the Δ9 desaturase-encoding gene resulted in lethality, suggesting that this enzyme has an essential role in this yeast. Transcription of the desaturase genes , and and cellular localization of the corresponding enzymes, have been studied under hypoxia and cold stress. Our findings indicate that expression of these desaturase genes and membrane composition were modulated by hypoxia and temperature stress, although the changes induced by these and other assayed conditions did not dramatically affect the general cellular fitness.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000315
2016-08-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/8/1435.html?itemId=/content/journal/micro/10.1099/mic.0.000315&mimeType=html&fmt=ahah

References

  1. Beckers A., Organe S., Timmermans L., Scheys K., Peeters A., Brusselmans K., Verhoeven G., Swinnen J. V. 2007; Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res 67:8180–8187 [View Article][PubMed]
    [Google Scholar]
  2. Bianchi M. M., Tizzani L., Destruelle M., Frontali L., Wésolowski-Louvel M. 1996; The ‘petite-negative' yeast Kluyveromyces lactis has a single gene expressing pyruvate decarboxylase activity. Mol Microbiol 19:27–36[PubMed] [CrossRef]
    [Google Scholar]
  3. Chintalapati S., Kiran M. D., Shivaji S. 2004; Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol 50:631–642[PubMed]
    [Google Scholar]
  4. Crabtree H. G. 1929; Observations on the carbohydrate metabolism of tumours. Biochem J 23:536–545[PubMed] [CrossRef]
    [Google Scholar]
  5. De Luca C., Zhou Y., Montanari A., Morea V., Oliva R., Besagni C., Bolotin-Fukuhara M., Frontali L., Francisci S. 2009; Can yeast be used to study mitochondrial diseases? Biolistic tRNA mutants for the analysis of mechanisms and suppressors. Mitochondrion 9:408–417 [View Article][PubMed]
    [Google Scholar]
  6. Diaz-Ruiz R., Rigoulet M., Devin A. 2011; The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta 1807:568–576 [View Article][PubMed]
    [Google Scholar]
  7. Du Y., Ferro-Novick S., Novick P. 2004; Dynamics and inheritance of the endoplasmic reticulum. J Cell Sci 117:2871–2878 [View Article][PubMed]
    [Google Scholar]
  8. Dyer J. M., Mullen R. T. 2001; Immunocytological localization of two plant fatty acid desaturases in the endoplasmic reticulum. FEBS Lett 494:44–47[PubMed] [CrossRef]
    [Google Scholar]
  9. Flavin R., Peluso S., Nguyen P. L., Loda M. 2010; Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol 6:551–562 [View Article][PubMed]
    [Google Scholar]
  10. Funk C. D. 2001; Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875 [View Article][PubMed]
    [Google Scholar]
  11. Heipieper H. J., Isken S., Saliola M. 2000; Ethanol tolerance and membrane fatty acid adaptation in adh multiple and null mutants of Kluyveromyces lactis . Res Microbiol 151:777–784[PubMed] [CrossRef]
    [Google Scholar]
  12. Janke C., Magiera M. M., Rathfelder N., Taxis C., Reber S., Maekawa H., Moreno-Borchart A., Doenges G., Schwob E. et al. 2004; A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962 [View Article][PubMed]
    [Google Scholar]
  13. Kainou K., Kamisaka Y., Kimura K., Uemura H. 2006; Isolation of Delta12 and omega3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and alpha-linolenic acids in Saccharomyces cerevisiae . Yeast 23:605–612 [View Article][PubMed]
    [Google Scholar]
  14. Kiers J., Zeeman A. M., Luttik M., Thiele C., Castrillo J. I., Steensma H. Y., van Dijken J. P., Pronk J. T. 1998; Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast 14:459–469 [View Article][PubMed]
    [Google Scholar]
  15. Köhrer K., Domdey H. 1991; Preparation of high molecular weight RNA. In Methods in Enzymology vol. 194 pp. 398–405 Edited by Guthrie C., Fink G. R. San Diego: Academic Press;
    [Google Scholar]
  16. Los D. A., Murata N. 1998; Structure and expression of fatty acid desaturases. Biochim Biophys Acta 1394:3–15[PubMed] [CrossRef]
    [Google Scholar]
  17. Micolonghi C., Wésolowski-Louvel M., Bianchi M. M. 2011; The Rag4 glucose sensor is involved in the hypoxic induction of KlPDC1 gene expression in the yeast Kluyveromyces lactis . Eukaryot Cell 10:146–148 [View Article][PubMed]
    [Google Scholar]
  18. Micolonghi C., Ottaviano D., Di Silvio E., Damato G., Heipieper H. J., Bianchi M. M. 2012; A dual signalling pathway for the hypoxic expression of lipid genes, dependent on the glucose sensor Rag4, is revealed by the analysis of the KlMGA2 gene in Kluyveromyces lactis . Microbiology 158:1734–1744 [View Article][PubMed]
    [Google Scholar]
  19. Morgan-Kiss R. M., Priscu J. C., Pocock T., Gudynaite-Savitch L., Huner N. P. A. 2006; Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rew 70:222–252 [CrossRef]
    [Google Scholar]
  20. Nakagawa Y., Sakumoto N., Kaneko Y., Harashima S. 2002; Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae . Biochem Biophys Res Commun 291:707–713 [View Article][PubMed]
    [Google Scholar]
  21. Natter K., Kohlwein S. D. 2013; Yeast and cancer cells – common principles in lipid metabolism. Biochim Biophys Acta 1831:314–326 [View Article][PubMed]
    [Google Scholar]
  22. Ottaviano D., Montanari A., De Angelis L., Santomartino R., Visca A., Brambilla L., Rinaldi T., Bello C., Reverberi M., Bianchi M. M. 2015; Unsaturated fatty acids-dependent linkage between respiration and fermentation revealed by deletion of hypoxic regulatory KlMGA2 gene in the facultative anaerobe-respiratory yeast Kluyveromyces lactis . FEMS Yeast Res 15:fov028 [View Article][PubMed]
    [Google Scholar]
  23. Oura T., Kajiwara S. 2008; Substrate specificity and regioselectivity of delta12 and omega3 fatty acid desaturases from Saccharomyces kluyveri . Biosci Biotechnol Biochem 72:3174–3179 [View Article][PubMed]
    [Google Scholar]
  24. Raimondi S., Rossi M., Leonardi A., Bianchi M. M., Rinaldi T., Amaretti A. 2014; Getting lipids from glycerol: new perspectives on biotechnological exploitation of Candida freyschussii . Microb Cell Fact 13:83 [View Article][PubMed]
    [Google Scholar]
  25. Reverberi M., Punelli M., Smith C. A., Zjalic S., Scarpari M., Scala V., Cardinali G., Aspite N., Pinzari F. et al. 2012; How peroxisomes affect aflatoxin biosynthesis in Aspergillus flavus . PLoS One 7:e48097 [View Article][PubMed]
    [Google Scholar]
  26. Riediger N. D., Othman R. A., Suh M., Moghadasian M. H. 2009; A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc 109:668–679 [View Article][PubMed]
    [Google Scholar]
  27. Rossi M., Buzzini P., Cordisco L., Amaretti A., Sala M., Raimondi S., Ponzoni C., Pagnoni U. M., Matteuzzi D. 2009; Growth, lipid accumulation, and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. FEMS Microbiol Ecol 69:363–372 [View Article][PubMed]
    [Google Scholar]
  28. Salani F., Bianchi M. M. 2006; Production of glucoamylase in pyruvate decarboxylase deletion mutants of the yeast Kluyveromyces lactis . Appl Microbiol Biotechnol 69:564–572 [View Article][PubMed]
    [Google Scholar]
  29. Sangwallek J., Kaneko Y., Tsukamoto T., Marui M., Sugiyama M., Ono H., Bamba T., Fukusaki E., Harashima S. 2014; Cloning and functional analysis of HpFAD2 and HpFAD3 genes encoding Δ12- and Δ15-fatty acid desaturases in Hansenula polymorpha . Gene 533:110–118 [View Article][PubMed]
    [Google Scholar]
  30. Schaffrath R., Breunig K. D. 2000; Genetics and molecular physiology of the yeast Kluyveromyces lactis . Fungal Gen Biol 30:173–190 [View Article]
    [Google Scholar]
  31. Sinensky M. 1974; Homeoviscous adaptation – a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli . Proc Natl Acad Sci U S A 71:522–525[PubMed] [CrossRef]
    [Google Scholar]
  32. Stewart L. C., Yaffe M. P. 1991; A role for unsaturated fatty acids in mitochondrial movement and inheritance. J Cell Biol 115:1249–1257[PubMed] [CrossRef]
    [Google Scholar]
  33. Stukey J. E., McDonough V. M., Martin C. E. 1989; Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae . J Biol Chem 264:16537–16544[PubMed]
    [Google Scholar]
  34. Suutari M., Rintamäki A., Laakso S. 1997; Membrane phospholipids in temperature adaptation of Candida utilis: alterations in fatty acid chain length and unsaturation. J Lipid Res 38:790–794[PubMed]
    [Google Scholar]
  35. Tatzer V., Zellnig G., Kohlwein S. D., Schneiter R. 2002; Lipid-dependent subcellular relocalization of the acyl chain desaturase in yeast. Mol Biol Cell 13:4429–4442 [View Article][PubMed]
    [Google Scholar]
  36. Vasconcelles M. J., Jiang Y., McDaid K., Gilooly L., Wretzel S., Porter D. L., Martin C. E., Goldberg M. A. 2001; Identification and characterization of a low oxygen response element involved in the hypoxic induction of a family of Saccharomyces cerevisiae genes. Implications for the conservation of oxygen sensing in eukaryotes. J Biol Chem 276:14374–14384 [View Article][PubMed]
    [Google Scholar]
  37. Wach A., Brachat A., Pöhlmann R., Philippsen P. 1994; New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae . Yeast 10:1793–1808 [View Article][PubMed]
    [Google Scholar]
  38. Wach A. 1996; PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae . Yeast 12:259–265 [View Article][PubMed]
    [Google Scholar]
  39. Warburg O. 1956; On the origin of cancer cells. Science 123:309–314 [View Article][PubMed]
    [Google Scholar]
  40. Watanabe K., Oura T., Sakai H., Kajiwara S. 2004; Yeast Delta12 fatty acid desaturase: gene cloning, expression, and function. Biosci Biotechnol Biochem 68:721–727 [View Article][PubMed]
    [Google Scholar]
  41. Wésolowski-Louvel M. 2011; An efficient method to optimize Kluyveromyces lactis gene targeting. FEMS Yeast Res 11:509–513 [View Article][PubMed]
    [Google Scholar]
  42. Yazawa H., Kamisaka Y., Kimura K., Yamaoka M., Uemura H. 2011; Efficient accumulation of oleic acid in Saccharomyces cerevisiae caused by expression of rat elongase 2 gene (rELO2) and its contribution to tolerance to alcohols. Appl Microbiol Biotechnol 91:1593–1600 [View Article][PubMed]
    [Google Scholar]
  43. Yu A. Q., Zhu J. C., Zhang B., Xing L. J., Li M. C. 2012; Knockout of fatty acid desaturase genes in Pichia pastoris GS115 and its effect on the fatty acid biosynthesis and physiological consequences. Arch Microbiol 194:1023–1032 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000315
Loading
/content/journal/micro/10.1099/mic.0.000315
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error