1887

Abstract

Polymerization of the oligosaccharides (K units) of complex capsular polysaccharides (CPSs) requires a Wzy polymerase, which is usually encoded in the gene cluster that directs K unit synthesis. Here, a gene cluster at the K locus (KL) that lacks a gene, KL19, was found in ST111 isolates 28 and RBH2 recovered from hospitals in the Russian Federation and Australia, respectively. However, these isolates produced long-chain capsule, and a gene was found in a 6.1 kb genomic island (GI) located adjacent to the gene. The GI also includes an acetyltransferase gene, , which is interrupted by an insertion sequence (IS) in RBH2. The capsule structure from both strains was →3)-α--GalNAc-(1→4)-α--GalNAcA-(1→3)-β--QuiNAc4NAc-(1→, determined using NMR spectroscopy. Biosynthesis of the K unit was inferred to be initiated with QuiNAc4NAc, and hence the Wzy forms the β-(1→3) linkage between QuiNAc4NAc and GalNAc. The GalNAc residue is 6--acetylated in isolate 28 only, showing that is responsible for this acetylation. The same GI with or without an IS in was found in draft genomes of other KL19 isolates, as well as ones carrying a closely related CPS gene cluster, KL39, which differs from KL19 only in a gene for an acyltransferase in the QuiNAc4NR synthesis pathway. Isolates carrying a KL1 variant with the and genes each interrupted by an IS also have this GI. To our knowledge, this study is the first report of genes involved in capsule biosynthesis normally found at the KL located elsewhere in genomes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000313
2016-08-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/8/1479.html?itemId=/content/journal/micro/10.1099/mic.0.000313&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Arbatsky N. P., Shneider M. M., Kenyon J. J., Shashkov A. S., Popova A. V., Miroshnikov K. A., Volozhantsev N. V., Knirel Y. A.. 2015; Structure of the neutral capsular polysaccharide of Acinetobacter baumannii NIPH146 that carries the KL37 capsule gene cluster. Carbohydr Res413:12–15[CrossRef]
    [Google Scholar]
  3. De Castro C., Parrilli M., Holst O., Molinaro A.. 2010; Microbe-associated molecular patterns in innate immunity: extraction and chemical analysis of Gram-negative bacterial lipopolysaccharides. Methods Enzymol480:89–115 [CrossRef][PubMed]
    [Google Scholar]
  4. Finn R. D., Bateman A., Clements J., Coggill P., Eberhardt R. Y., Eddy S. R., Heger A., Hetherington K., Holm L. et al. 2014; Pfam: the protein families database. Nucleic Acids Res42:D222–D230 [CrossRef][PubMed]
    [Google Scholar]
  5. Geisinger E., Isberg R. R.. 2015; Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii . PLoS Pathog11:e1004691 [CrossRef][PubMed]
    [Google Scholar]
  6. Hamidian M., Hall R. M.. 2013; ISAba1 targets a specific position upstream of the intrinsic ampC gene of Acinetobacter baumannii leading to cephalosporin resistance. J Antimicrob Chemother68:2682–2683 [CrossRef][PubMed]
    [Google Scholar]
  7. Hamidian M., Kenyon J. J., Holt K. E., Pickard D. J., Hall R. M.. 2014; A conjugative plasmid carrying the carbapenem resistance gene bla OXA-23 in AbaR4 in an extensively resistant GC1 Acinetobacter baumannii isolate. J Antimicrob Chemother69:2625–2628 [CrossRef][PubMed]
    [Google Scholar]
  8. Holt K. E., Hamidian M., Kenyon J. J., Wynn M. T., Hawkey J., Pickard D., Hall R. M.. 2015; Genome sequence of Acinetobacter baumannii strain A1, an early example of antibiotic-resistant global clone 1. Genome Announc3:e0003215 [CrossRef][PubMed]
    [Google Scholar]
  9. Holt K., Kenyon J. J., Hamidian M., Schultz M. B., Pickard D. J., Dougan G., Hall R. M.. 2016; Five decades of genome evolution in the globally distributed, extensively antibiotic-resistant Acinetobacter baumannii global clone 1. Microb Genom2:2 [CrossRef]
    [Google Scholar]
  10. Hu D., Liu B., Dijkshoorn L., Wang L., Reeves P. R.. 2013; Diversity in the major polysaccharide antigen of Acinetobacter baumannii assessed by DNA sequencing, and development of a molecular serotyping scheme. PLoS One8:e70329 [CrossRef][PubMed]
    [Google Scholar]
  11. Kenyon J. J., Hall R. M.. 2013; Variation in the complex carbohydrate biosynthesis loci of Acinetobacter baumannii genomes. PLoS One8:e62160 [CrossRef][PubMed]
    [Google Scholar]
  12. Kenyon J. J., Reeves P. R.. 2013; The Wzy O-antigen polymerase of Yersinia pseudotuberculosis O: 2a has a dependence on the Wzz chain-length determinant for efficient polymerization. FEMS Microbiol Lett349:163–170 [CrossRef][PubMed]
    [Google Scholar]
  13. Kenyon J. J., Marzaioli A. M., Hall R. M., De Castro C.. 2014; Structure of the K2 capsule associated with the KL2 gene cluster of Acinetobacter baumannii . Glycobiology24:554–563 [CrossRef][PubMed]
    [Google Scholar]
  14. Kenyon J. J., Marzaioli A. M., Hall R. M., De Castro C.. 2015a; Structure of the K6 capsular polysaccharide from Acinetobacter baumannii isolate RBH4. Carbohydr Res409:30–35[CrossRef]
    [Google Scholar]
  15. Kenyon J. J., Marzaioli A. M., Hall R. M., De Castro C.. 2015b; Structure of the K12 capsule containing 5,7-Di-N-acetylacinetaminic acid from Acinetobacter baumannii isolate D36. Glycobiology25:881–887 [CrossRef]
    [Google Scholar]
  16. Kenyon J. J., Hall R. M., De Castro C.. 2015c; Structural determination of the K14 capsular polysaccharide from an ST25 Acinetobacter baumannii isolate, D46. Carbohydr Res417:52–56[CrossRef]
    [Google Scholar]
  17. Kenyon J. J., Marzaioli A. M., De Castro C., Hall R. M.. 2015d; 5,7-di-N-acetyl-acinetaminic acid – a novel non-2-ulosonic acid found in the capsule of an Acinetobacter baumannii isolate. Glycobiology25:644–654 [CrossRef]
    [Google Scholar]
  18. Knirel Y. A., Vinogradov E. V., Shashkov A. S., Wilkinson S. G., Tahara Y., Dmitriev B. A., Kochetkov N. K., Stanislavsky E. S., Mashilova G. M.. 1986; Somatic antigens of Pseudomonas aeruginosa. The structure of O-specific polysaccharide chains of the lipopolysaccharides from P. aeruginosa O1 (Lányi), O3 (Habs), O13 and O14 (Wokatsch), and the serologically related strain NCTC 8505. Eur J Biochem155:659–669 [CrossRef][PubMed]
    [Google Scholar]
  19. Knirel Y. A., Kocharova N. A., Shashkov A. S., Kochetkov N. K., Kholodkova E. V., Stanislavsky E. S.. 1987; Somatic antigens of Pseudomonas aeruginosa. The structure of O-specific polysaccharide chains of the lipopolysaccharides from P. aeruginosa II (Sandvik) and V (IM-1, Verder-Evans). Eur J Biochem166:189–197 [CrossRef][PubMed]
    [Google Scholar]
  20. Leontein K., Lönngren J.. 1993; Determination of the absolute configuration of sugars by gas-liquid chromatography of their acetylated 2-octyl glycosides. Meth Carbohydr Chem9:87–89
    [Google Scholar]
  21. Lipkind G. M., Shashkov A. S., Knirel Y. A., Vinogradov E. V., Kochetkov N. K.. 1988; A computer-assisted structural analysis of regular polysaccharides on the basis of 13C-n.m.r. data. Carbohydr Res175:59–75[CrossRef]
    [Google Scholar]
  22. Morrison M. J., Imperiali B.. 2013; Biosynthesis of UDP-N,Nʹ-diacetylbacillosamine in Acinetobacter baumannii: biochemical characterization and correlation to existing pathways. Arch Biochem Biophys536:72–80 [CrossRef][PubMed]
    [Google Scholar]
  23. Roca I., Espinal P., Vila-Farres X., Vila J.. 2012; The Acinetobacter baumannii oxymoron: commensal hospital dweller turned pan-drug-resistant menace. Front Microbiol3:148[CrossRef]
    [Google Scholar]
  24. Runnegar N., Sidjabat H., Goh H. M. S., Nimmo G. R., Schembri M. A., Paterson D. L.. 2010; Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a single institution over a 10-year period. J Clin Microbiol48:4051–4056[CrossRef]
    [Google Scholar]
  25. Russo T. A., Luke N. R., Beanan J. M., Olson R., Sauberan S. L., MacDonald U., Schultz L. W., Umland T. C., Campagnari A. A.. 2010; The K1 capsular polysaccharide of Acinetobacter baumannii strain 307-0294 is a major virulence factor. Infect Immun78:3993–4000 [CrossRef][PubMed]
    [Google Scholar]
  26. Russo T. A., Beanan J. M., Olson R., MacDonald U., Cox A. D., St Michael F., Vinogradov E. V., Spellberg B., Luke-Marshall N. R., Campagnari A. A.. 2013; The K1 capsular polysaccharide from Acinetobacter baumannii is a potential therapeutic target via passive immunization. Infect Immun81:915–922 [CrossRef][PubMed]
    [Google Scholar]
  27. Sawardeker J. S., Sloneker J. H., Jeanes A.. 1965; Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography. Anal Chem37:1602–1603[CrossRef]
    [Google Scholar]
  28. Schultz M. B., Thanh D. P., Hoan N. T. D., Wick R. R., Ingle D. J., Hawkey J., Edwards D. J., Kenyon J. J., Lan N. P. H. et al. 2016; Repeated local emergence of carbapenem-resistant Acinetobacter baumannii in a single hospital ward. Microbial Genomics2:3 [CrossRef]
    [Google Scholar]
  29. Senchenkova S. N., Shashkov A. S., Shneider M. M., Arbatsky N. P., Popova A. V., Miroshnikov K. A., Volozhantsev N. V., Knirel Y. A.. 2014; Structure of the capsular polysaccharide of Acinetobacter baumannii ACICU containing di-N-acetylpseudaminic acid. Carbohydr Res391:89–92[CrossRef]
    [Google Scholar]
  30. Senchenkova S. N., Popova A. V., Shashkov A. S., Shneider M. M., Mei Z., Arbatsky N. P., Liu B., Miroshnikov K. A., Volozhantsev N. V., Knirel Y. A.. 2015a; Structure of a new pseudaminic acid-containing capsular polysaccharide of Acinetobacter baumannii LUH5550 having the KL42 capsule biosynthesis locus. Carbohydr Res407:154–157[CrossRef]
    [Google Scholar]
  31. Senchenkova S. N., Shashkov A. S., Popova A. V., Shneider M. M., Arbatsky N. P., Miroshnikov K. A., Volozhantsev N. V., Knirel Y. A.. 2015b; Structure elucidation of the capsular polysaccharide of Acinetobacter baumannii AB5075 having the KL25 capsule biosynthesis locus. Carbohydr Res408:8–11[CrossRef]
    [Google Scholar]
  32. Shashkov A. S., Lipkind G. M., Knirel Y. A., Kochetkov N. K.. 1988; Stereochemical factors determining the effects of glycosylation on the 13C chemical shifts in carbohydrates. Magnetic Resonance Chem26:735–747[CrossRef]
    [Google Scholar]
  33. Shashkov A. S., Shneider M. M., Senchenkova S. N., Popova A. V., Nikitina A. S., Babenko V. V., Kostryukova E. S., Miroshnikov K. A., Volozhantsev N. V., Knirel Y. A.. 2015a; Structure of the capsular polysaccharide of Acinetobacter baumannii 1053 having the KL91 capsule biosynthesis gene locus. Carbohydr Res404:79–82[CrossRef]
    [Google Scholar]
  34. Shashkov A. S., Kenyon J. J., Arbatsky N. P., Shneider M. M., Popova A. V., Miroshnikov K. A., Volozhantsev N. V., Knirel Y. A.. 2015b; Structures of three different neutral polysaccharide of Acinetobacter baumannii, NIPH190, NIPH201, and NIPH615, assigned to K30, K45, and K48 capsule types, respectively, based on capsule biosynthesis gene clusters. Carbohydr Res417:81–88[CrossRef]
    [Google Scholar]
  35. Shashkov A. S., Kenyon J. J., Senchenkova S. N., Shneider M. M., Popova A. V., Arbatsky N. P., Miroshnikov K. A., Volozhantsev N. V., Hall R. M., Knirel Y. A.. 2015c; Acinetobacter baumannii K27 and K44 capsular polysaccharides have the same K unit but different structures due to the presence of distinct wzy genes in otherwise closely related K gene clusters. Glycobiology26:501–508 [CrossRef]
    [Google Scholar]
  36. Shashkov A. S., Senchenkova S. N., Popova A. V., Mei Z., Shneider M. M., Liu B., Miroshnikov K. A., Volozhantsev N. V., Knirel Y. A.. 2015d; Revised structure of the capsular polysaccharide of Acinetobacter baumannii LUH5533 (serogroup O1) containing di-N-acetyllegionaminic acid. Russ Chem B64:1196–1199 [CrossRef]
    [Google Scholar]
  37. Snitkin E. S., Zelazny A. M., Montero C. I., Stock F., Mijares L., Murray P. R., Segre J. A., Mullikin J., Blakesley R. et al. 2011; Genome-wide recombination drives diversification of epidemic strains of Acinetobacter baumannii . Proc Natl Acad Sci U S A108:13758–13763 [CrossRef]
    [Google Scholar]
  38. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S.. 2011; PHAST: a fast phage search tool. Nucleic Acids Res39:W347–W352 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000313
Loading
/content/journal/micro/10.1099/mic.0.000313
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error