1887

Abstract

Gene organization and control are described by models conceived in the 1960s. These models explain basic gene regulatory mechanisms and underpin current genome annotation. However, such models struggle to explain recent genome-scale observations. For example, accounts of RNA synthesis initiating within genes, widespread antisense transcription and non-canonical DNA binding by gene regulatory proteins are difficult to reconcile with traditional thinking. As a result, unexpected observations have often been dismissed and downstream consequences ignored. In this paper I will argue that, to fully understand the biology of bacterial chromosomes, we must embrace their hidden layers of complexity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000309
2016-07-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/7/1167.html?itemId=/content/journal/micro/10.1099/mic.0.000309&mimeType=html&fmt=ahah

References

  1. Adams M. D., Fields C., Venter J. C..( 1994;). Automated DNA Sequencing and Analysis. San Diego, CA:: Academic Press;.
    [Google Scholar]
  2. Bak G., Lee J., Suk S., Kim D., Young Lee J., Kim K. S., Choi B. S., Lee Y..( 2015;). Identification of novel sRNAs involved in biofilm formation, motility, and fimbriae formation in Escherichia coli. . Sci Rep 5: 15287. [CrossRef] [PubMed]
    [Google Scholar]
  3. Blattner F. R., Plunkett G., Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K. et al.( 1997;). The complete genome sequence of Escherichia coli K-12. . Science 277: 1453–1462. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bonocora R. P., Smith C., Lapierre P., Wade J. T..( 2015;). Genome-scale mapping of Escherichia coli σ54 reveals widespread, conserved intragenic binding. . PLoS Genet 11: e1005552. [CrossRef] [PubMed]
    [Google Scholar]
  5. Boysen A., Møller-Jensen J., Kallipolitis B., Valentin-Hansen P., Overgaard M..( 2010;). Translational regulation of gene expression by an anaerobically induced small non-coding RNA in Escherichia coli. . J Biol Chem 285: 10690–10702. [CrossRef] [PubMed]
    [Google Scholar]
  6. Brown D. R., Barton G., Pan Z., Buck M., Wigneshweraraj S..( 2014;). Nitrogen stress response and stringent response are coupled in Escherichia coli. . Nat Commun 5: 4115. [CrossRef] [PubMed]
    [Google Scholar]
  7. Browning D. F., Busby S. J..( 2004;). The regulation of bacterial transcription initiation. . Nat Rev Microbiol 2: 57–65. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cardinale C. J., Washburn R. S., Tadigotla V. R., Brown L. M., Gottesman M. E., Nudler E..( 2008;). Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. . Science 320: 935–938. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chao Y., Papenfort K., Reinhardt R., Sharma C. M., Vogel J..( 2012;). An atlas of Hfq-bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs. . EMBO J 31: 4005–4019. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chintakayala K., Singh S. S., Rossiter A. E., Shahapure R., Dame R. T., Grainger D. C..( 2013;). E. coli Fis protein insulates the cbpA gene from uncontrolled transcription. . PLoS Genet 9: e1003152. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cohen G., Jacob F..( 1959;). Sur la repression de la synthese des enzymes intervenant dans la formation du tryptophane chez Escherichia coli. . C R Acad Sci Paris 248: 3490–3492.
    [Google Scholar]
  12. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. et al.( 1998;). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. . Nature 393: 537–544. [CrossRef] [PubMed]
    [Google Scholar]
  13. Conway T., Creecy J. P., Maddox S. M., Grissom J. E., Conkle T. L., Shadid T. M., Teramoto J., San Miguel P., Shimada T. et al.( 2014;). Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing. . MBio 5: e01442-14. [CrossRef] [PubMed]
    [Google Scholar]
  14. Dickson R. C., Abelson J., Barnes W. M., Reznikoff W. S..( 1975;). Genetic regulation: the Lac control region. . Science 187: 27–35. [CrossRef] [PubMed]
    [Google Scholar]
  15. Dornenburg J. E., Devita A. M., Palumbo M. J., Wade J. T..( 2010;). Widespread antisense transcription in Escherichia coli. . MBio 1: e00024-10. [CrossRef] [PubMed]
    [Google Scholar]
  16. Durand S., Storz G..( 2010;). Reprogramming of anaerobic metabolism by the FnrS small RNA. . Mol Microbiol 75: 1215–1231. [CrossRef] [PubMed]
    [Google Scholar]
  17. Durand S., Gilet L., Condon C..( 2012;). The essential function of B. subtilis RNase III is to silence foreign toxin genes. . PLoS Genet 8: e1003181. [CrossRef] [PubMed]
    [Google Scholar]
  18. Efromovich S., Grainger D., Bodenmiller D., Spiro S..( 2008;). Genome-wide identification of binding sites for the nitric oxide-sensitive transcriptional regulator NsrR. . Methods Enzymol 437: 211–233. [CrossRef] [PubMed]
    [Google Scholar]
  19. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A. et al.( 1995;). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. . Science 269: 496–512. [CrossRef] [PubMed]
    [Google Scholar]
  20. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G. et al.( 1995;). The minimal gene complement of Mycoplasma genitalium. . Science 270: 397–403. [CrossRef] [PubMed]
    [Google Scholar]
  21. Gelfand M. S., Novichkov P. S., Novichkova E. S., Mironov A. A..( 2000;). Comparative analysis of regulatory patterns in bacterial genomes. . Brief Bioinform 1: 357–371. [CrossRef] [PubMed]
    [Google Scholar]
  22. Gilbert W., Maxam A..( 1973;). The nucleotide sequence of the lac operator. . Proc Natl Acad Sci U S A 70: 3581–3584. [CrossRef] [PubMed]
    [Google Scholar]
  23. Gilbert W., Müller-Hill B..( 1967;). The lac operator is DNA. . Proc Natl Acad Sci U S A 58: 2415–2421. [CrossRef] [PubMed]
    [Google Scholar]
  24. Grainger D. C., Hurd D., Harrison M., Holdstock J., Busby S. J..( 2005;). Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. . Proc Natl Acad Sci U S A 102: 17693–17698. [CrossRef] [PubMed]
    [Google Scholar]
  25. Grainger D. C., Hurd D., Goldberg M. D., Busby S. J..( 2006;). Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome. . Nucleic Acids Res 34: 4642–4652. [CrossRef] [PubMed]
    [Google Scholar]
  26. Grainger D. C., Aiba H., Hurd D., Browning D. F., Busby S. J..( 2007;). Transcription factor distribution in Escherichia coli: studies with FNR protein. . Nucleic Acids Res 35: 269–278. [CrossRef] [PubMed]
    [Google Scholar]
  27. Grainger D. C., Overton T. W., Reppas N., Wade J. T., Tamai E., Hobman J. L., Constantinidou C., Struhl K., Church G. et al.( 2004;). Genomic studies with Escherichia coli MelR protein: applications of chromatin immunoprecipitation and microarrays. . J Bacteriol 186: 6938–6943. [CrossRef] [PubMed]
    [Google Scholar]
  28. Green J., Stapleton M. R., Smith L. J., Artymiuk P. J., Kahramanoglou C., Hunt D. M., Buxton R. S..( 2014;). Cyclic-AMP and bacterial cyclic-AMP receptor proteins revisited: adaptation for different ecological niches. . Curr Opin Microbiol 18: 1–7. [CrossRef] [PubMed]
    [Google Scholar]
  29. Gómez-Lozano M., Marvig R. L., Molina-Santiago C., Tribelli P. M., Ramos J. L., Molin S..( 2015;). Diversity of small RNAs expressed in Pseudomonas species. . Environ Microbiol Rep 7: 227–236. [CrossRef] [PubMed]
    [Google Scholar]
  30. Hawley D. K., McClure W. R..( 1983;). Compilation and analysis of Escherichia coli promoter DNA sequences. . Nucleic Acids Res 11: 2237–2255. [CrossRef] [PubMed]
    [Google Scholar]
  31. Haycocks J. R. J., Grainger D. C..( 2016;). Unusually situated binding sites for bacterial transcription factors can have hidden functionality. . PLoS One 11: e0157016. [CrossRef] [PubMed]
    [Google Scholar]
  32. Haycocks J. R., Sharma P., Stringer A. M., Wade J. T., Grainger D. C..( 2015;). The molecular basis for control of ETEC enterotoxin expression in response to environment and host. . PLoS Pathog 11: e1004605. [CrossRef] [PubMed]
    [Google Scholar]
  33. Hua S. S., Markovitz A..( 1975;). Regulation of galactose operon at the gal operator-promoter region in Escherichia coli K-12. . J Bacteriol 122: 510–517.[PubMed]
    [Google Scholar]
  34. Iost I., Dreyfus M..( 1995;). The stability of Escherichia coli lacZ mRNA depends upon the simultaneity of its synthesis and translation. . EMBO J 14: 3252–3261.[PubMed]
    [Google Scholar]
  35. Jacob F., Monod J..( 1959;). Gènes de structure et gènes de regulation dans la biosynthèse des proteins. . C R Acad Sci Paris 249: 1282–1284.
    [Google Scholar]
  36. Jacob F., Monod J..( 1961;). Genetic regulatory mechanisms in the synthesis of proteins. . J Mol Biol 3: 318–356. [CrossRef] [PubMed]
    [Google Scholar]
  37. Jacob F., Perrin D., Sánchez C., Monod J..( 1960;). L'opéron: groupe de gènes à expression coordonnée par un opérateur. . C R Acad Sci Paris 250: 1727–1729.
    [Google Scholar]
  38. Jacob F., Ullman A., Sánchez C., Monod J..( 1964;). Le promoteur, élément génétique necessaire à l’ expression d’ un opéron. . C R Acad Sci Paris 258: 3125–3128.
    [Google Scholar]
  39. Keseler I. M., Mackie A., Peralta-Gil M., Santos-Zavaleta A., Gama-Castro S., Bonavides-Martínez C., Fulcher C., Huerta A. M., Kothari A. et al.( 2013;). EcoCyc: fusing model organism databases with systems biology. . Nucleic Acids Res 41: D605–612. [CrossRef] [PubMed]
    [Google Scholar]
  40. Knapp G. S., Lyubetskaya A., Peterson M. W., Gomes A. L., Ma Z., Galagan J. E., McDonough K. A..( 2015;). Role of intragenic binding of cAMP responsive protein (CRP) in regulation of the succinate dehydrogenase genes Rv0249c-Rv0247c in TB complex mycobacteria. . Nucleic Acids Res 43: 5377–5393. [CrossRef] [PubMed]
    [Google Scholar]
  41. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A. et al.( 1997;). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. . Nature 390: 249–256. [CrossRef] [PubMed]
    [Google Scholar]
  42. Landick R., Wade J. T., Grainger D. C..( 2015;). H-NS and RNA polymerase: a love-hate relationship?. Curr Opin Microbiol 24: 53–59. [CrossRef] [PubMed]
    [Google Scholar]
  43. Li H., Rhodius V., Gross C., Siggia E. D..( 2002;). Identification of the binding sites of regulatory proteins in bacterial genomes. . Proc Natl Acad Sci U S A 99: 11772–11777.[CrossRef]
    [Google Scholar]
  44. Madan Babu M., Teichmann S. A..( 2003;). Functional determinants of transcription factors in Escherichia coli: protein families and binding sites. . Trends Genet 19: 75–79. [CrossRef] [PubMed]
    [Google Scholar]
  45. Maniatis T., Ptashne M., Backman K., Kield D., Flashman S., Jeffrey A., Maurer R..( 1975;). Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda. . Cell 5: 109–113. [CrossRef] [PubMed]
    [Google Scholar]
  46. Minch K. J., Rustad T. R., Peterson E. J., Winkler J., Reiss D. J., Ma S., Hickey M., Brabant W., Morrison B. et al.( 2015;). The DNA-binding network of Mycobacterium tuberculosis. . Nat Commun 6: 5829. [CrossRef] [PubMed]
    [Google Scholar]
  47. Musso R., Di Lauro R., Rosenberg M., de Crombrugghe B..( 1977;). Nucleotide sequence of the operator-promoter region of the galactose operon of Escherichia coli. . Proc Natl Acad Sci U S A 74: 106–110. [CrossRef] [PubMed]
    [Google Scholar]
  48. Nicolas P., Mäder U., Dervyn E., Rochat T., Leduc A., Pigeonneau N., Bidnenko E., Marchadier E., Hoebeke M. et al.( 2012;). Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. . Science 335: 1103–1106. [CrossRef] [PubMed]
    [Google Scholar]
  49. Overbeek R., Bartels D., Vonstein V., Meyer F..( 2007;). Annotation of bacterial and archaeal genomes: improving accuracy and consistency. . Chem Rev 107: 3431–3447. [CrossRef] [PubMed]
    [Google Scholar]
  50. Pabo C. O., Sauer R. T..( 1984;). Protein-DNA recognition. . Annu Rev Biochem 53: 293–321. [CrossRef] [PubMed]
    [Google Scholar]
  51. Pavesi G., Mauri G., Pesole G..( 2004;). In silico representation and discovery of transcription factor binding sites. . Brief Bioinform 5: 217–236. [CrossRef] [PubMed]
    [Google Scholar]
  52. Peters J. M., Mooney R. A., Grass J. A., Jessen E. D., Tran F., Landick R..( 2012;). Rho and NusG suppress pervasive antisense transcription in Escherichia coli. . Genes Dev 26: 2621–2633. [CrossRef] [PubMed]
    [Google Scholar]
  53. Ptashne M..( 1967;). Specific binding of the lambda phage repressor to lambda DNA. . Nature 214: 232–234. [CrossRef] [PubMed]
    [Google Scholar]
  54. Raghavan R., Sloan D. B., Ochman H..( 2012;). Antisense transcription is pervasive but rarely conserved in enteric bacteria. . MBio 3: e00156-12. [CrossRef] [PubMed]
    [Google Scholar]
  55. Ramsay G..( 1998;). DNA chips: state-of-the art. . Nat Biotechnol 16: 40–44. [CrossRef] [PubMed]
    [Google Scholar]
  56. Reppas N. B., Wade J. T., Church G. M., Struhl K..( 2006;). The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. . Mol Cell 24: 747–757. [CrossRef] [PubMed]
    [Google Scholar]
  57. Rivas E., Klein R. J., Jones T. A., Eddy S. R..( 2001;). Computational identification of noncoding RNAs in E. coli by comparative genomics. . Curr Biol 11: 1369–1373. [CrossRef] [PubMed]
    [Google Scholar]
  58. Rivers A. R., Burns A. S., Chan L. K., Moran M. A..( 2016;). Experimental identification of small non-coding RNAs in the model marine bacterium Ruegeria pomeroyi DSS-3. . Front Microbiol 7: 380. [CrossRef] [PubMed]
    [Google Scholar]
  59. Robison K., McGuire A. M., Church G. M..( 1998;). A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. . J Mol Biol 284: 241–254. [CrossRef] [PubMed]
    [Google Scholar]
  60. Sanger F., Nicklen S., Coulson A. R..( 1977;). DNA sequencing with chain-terminating inhibitors. . Proc Natl Acad Sci U S A 74: 5463–5467. [CrossRef] [PubMed]
    [Google Scholar]
  61. Schleif R..( 1969;). Induction of the L-arabinose operon. . J Mol Biol 46: 197–199. [CrossRef] [PubMed]
    [Google Scholar]
  62. Selinger D. W., Cheung K. J., Mei R., Johansson E. M., Richmond C. S., Blattner F. R., Lockhart D. J., Church G. M..( 2000;). RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. . Nat Biotechnol 18: 1262–1268. [CrossRef] [PubMed]
    [Google Scholar]
  63. Sesto N., Wurtzel O., Archambaud C., Sorek R., Cossart P..( 2013;). The excludon: a new concept in bacterial antisense RNA-mediated gene regulation. . Nat Rev Microbiol 11: 75–82. [CrossRef] [PubMed]
    [Google Scholar]
  64. Sharma C. M., Hoffmann S., Darfeuille F., Reignier J., Findeiss S., Sittka A., Chabas S., Reiche K., Hackermüller J. et al.( 2010;). The primary transcriptome of the major human pathogen Helicobacter pylori. . Nature 464: 250–255. [CrossRef] [PubMed]
    [Google Scholar]
  65. Shimada T., Ishihama A., Busby S. J., Grainger D. C..( 2008;). The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions. . Nucleic Acids Res 36: 3950–3955. [CrossRef] [PubMed]
    [Google Scholar]
  66. Singh S. S., Grainger D. C..( 2013;). H-NS can facilitate specific DNA-binding by RNA polymerase in AT-rich gene regulatory regions. . PLoS Genet 9: e1003589. [CrossRef] [PubMed]
    [Google Scholar]
  67. Singh S. S., Singh N., Bonocora R. P., Fitzgerald D. M., Wade J. T., Grainger D. C..( 2014;). Widespread suppression of intragenic transcription initiation by H-NS. . Genes Dev 28: 214–219. [CrossRef] [PubMed]
    [Google Scholar]
  68. Smith B. R., Schleif R..( 1978;). Nucleotide sequence of the L-arabinose regulatory region of Escherichia coli K12. . J Biol Chem 253: 6931–6933.[PubMed]
    [Google Scholar]
  69. Storz G., Vogel J., Wassarman K. M..( 2011;). Regulation by small RNAs in bacteria: expanding frontiers. . Mol Cell 43: 880–891. [CrossRef] [PubMed]
    [Google Scholar]
  70. Tu S., Guo S. J., Chen C. S., Liu C. X., Jiang H. W., Ge F., Deng J. Y., Zhou Y. M., Czajkowsky D. M. et al.( 2015;). YcgC represents a new protein deacetylase family in prokaryotes. . Elife 4: e05322. [CrossRef] [PubMed]
    [Google Scholar]
  71. Wade J. T., Grainger D. C..( 2014;). Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. . Nat Rev Microbiol 12: 647–653. [CrossRef] [PubMed]
    [Google Scholar]
  72. Wade J. T., Struhl K., Busby S. J., Grainger D. C..( 2007;). Genomic analysis of protein-–DNA interactions in bacteria: insights into transcription and chromosome organization. . Mol Microbiol 65: 21–26. [CrossRef] [PubMed]
    [Google Scholar]
  73. Webster C., Kempsell K., Booth I., Busby S..( 1987;). Organisation of the regulatory region of the Escherichia coli melibiose operon. . Gene 59: 253–263. [CrossRef] [PubMed]
    [Google Scholar]
  74. Wei W., Yu X. D..( 2007;). Comparative analysis of regulatory motif discovery tools for transcription factor binding sites. . Genomics Proteomics Bioinformatics 5: 131–142. [CrossRef] [PubMed]
    [Google Scholar]
  75. Wu R. A. Y. (1972);. Nucleotide sequence analysis of DNA. . Nature 236: 198–200.[CrossRef]
    [Google Scholar]
  76. Yamamoto K., Ishihama A., Busby S. J., Grainger D. C..( 2011;). The Escherichia coli K-12 MntR miniregulon includes dps, which encodes the major stationary-phase DNA-binding protein. . J Bacteriol 193: 1477–1480. [CrossRef] [PubMed]
    [Google Scholar]
  77. Zhang Y., Feng Y., Chatterjee S., Tuske S., Ho M. X., Arnold E., Ebright R. H..( 2012;). Structural basis of transcription initiation. . Science 338: 1076–1080. [CrossRef] [PubMed]
    [Google Scholar]
  78. Zuo Y., Steitz T. A..( 2015;). Crystal structures of the E. coli transcription initiation complexes with a complete bubble. . Mol Cell 58: 534–540. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000309
Loading
/content/journal/micro/10.1099/mic.0.000309
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error