1887

Abstract

Pressmud is a substrate derived from sugarcane juice filtrate, and around 26–40  kg of this residue are produced per ton of sugarcane. It is mainly used as fertilizer in crops, and its application in the field is often made without any prior treatment, but, in this research, it was studied for the risk this practice poses for human health. This research was stimulated by previous results indicating the presence of opportunistic pathogens in residues used in various composting systems and the extensive use of fresh pressmud in agriculture. Here, It was assessed the fungal diversity present in both fresh and composting pressmud using 454 pyrosequencing. In addition, heat-tolerant fungi were isolated and surveyed for their enzymatic repertoire of biomass-degrading enzymes (cellulase, xylanase, laccase and polygalacturonase). A wide range of opportunistic pathogens was found among the most abundant taxa in the fresh pressmud, such as (43.13 %), sp. (10.07 %), (7.91 %), and (8.19 %). This indicates that fresh pressmud might be a putative source of human pathogenic fungi, presenting a potential threat to human health if applied as fertilizer without any treatment. With regard to the heat-tolerant fungi found in this substrate, all the 110 isolates screened were able to produce at least one of the tested enzymes. The pressmud composting process not only effectively reduces the load of pathogenic fungi, but also creates an interesting environment for fungi able to produce thermostable hydrolytic and oxidative enzymes with biotechnological applications.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000306
2016-07-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/7/1147.html?itemId=/content/journal/micro/10.1099/mic.0.000306&mimeType=html&fmt=ahah

References

  1. Abarenkov K., Henrik Nilsson R., Larsson K. H., Alexander I. J., Eberhardt U., Erland S., Høiland K., Kjøller R., Larsson E. et al. 2010; The UNITE database for molecular identification of fungi-recent updates and future perspectives. New Phytol186:281–285 [CrossRef][PubMed]
    [Google Scholar]
  2. Balakrishnan M., Batra V. S.. 2011; Valorization of solid waste in sugar factories with possible applications in India: a review. J Environ Manage92:2886–2891 [CrossRef][PubMed]
    [Google Scholar]
  3. Berenguer J., Rodríguez-Tudela J. L., Richard C., Alvarez M., Sanz M. A., Gaztelurrutia L., Ayats J., Martinez-Suarez J. V.. 1997; Deep infections caused by Scedosporium prolificans. A report on 16 cases in Spain and a review of the literature. Scedosporium Prolificans Spanish Study Group. Medicine76:256–265 [CrossRef][PubMed]
    [Google Scholar]
  4. Berka R. M., Grigoriev I. V., Otillar R., Salamov A., Grimwood J., Reid I., Ishmael N., John T., Darmond C. et al. 2011; Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol29:922–929 [CrossRef][PubMed]
    [Google Scholar]
  5. Bernhardt H. W., Notcutt P.. 1993; Composting of filter cake from a sugar factory. South African Sugar Technologists’ Association185–187
    [Google Scholar]
  6. Bhosale P. R., Chonde S. G., Nakade D. B., Raut P. D.. 2012; Studies on physico-chemical characteristics os waxed and dewaxed pressmud and its effect on water holding capacity of soil. Int J Biol Sci1:35–41
    [Google Scholar]
  7. Bonito G., Isikhuemhen O. S., Vilgalys R.. 2010; Identification of fungi associated with municipal compost using DNA-based techniques. Bioresour Technol101:1021–1027 [CrossRef][PubMed]
    [Google Scholar]
  8. Bremner J. M., Mulvaney C. S.. 1982; Nitrogen total. In Methods of Soil Analysis Part 2 pp.371–378 Edited by Page A. L., Miller R. H., Keeney D. R.. Madison: Am. Soc. Agron;
    [Google Scholar]
  9. CONAB 2015; Companhia Nacional de Abastecimento. Acompanhamento Da Safra Brasileira Cana-De-Açúcar pp.1–28 Brasília: Primeiro Levantamento;
    [Google Scholar]
  10. Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., Fierer N., Peña A. G., Goodrich J. K. et al. 2010; QIIME allows analysis of high-throughput community sequencing data. Nat Methods7:335–336 [CrossRef][PubMed]
    [Google Scholar]
  11. D'Souzaa D. T., Tiwari R., Sah A. K., Raghukumar C.. 2006; Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme Microb Tech38:504–511[CrossRef]
    [Google Scholar]
  12. de Cassia Pereira J., Paganini Marques N., Rodrigues A., Brito de Oliveira T., Boscolo M., da Silva R., Gomes E., Bocchini Martins D. A., Pereira J. C.. 2015; Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J Appl Microbiol118:928–939 [CrossRef][PubMed]
    [Google Scholar]
  13. De Gannes V., Eudoxie G., Hickey W. J.. 2013; Insights into fungal communities in composts revealed by 454-pyrosequencing: implications for human health and safety. Front Microbiol4:164 [CrossRef][PubMed]
    [Google Scholar]
  14. Dehghani R., Asadi M. A., Charkhloo E., Mostafaie G., Saffari M., Mousavi G. A., Pourbabaei M.. 2012; Identification of fungal communities in producing compost by windrow method. J Environ Protect3:61–67[CrossRef]
    [Google Scholar]
  15. Edgar R. C.. 2010; Search and clustering orders of magnitude faster than BLAST. Bioinformatics26:2460–2461 [CrossRef][PubMed]
    [Google Scholar]
  16. Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R.. 2011; UCHIME improves sensitivity and speed of chimera detection. Bioinformatics27:2194–2200 [CrossRef][PubMed]
    [Google Scholar]
  17. Gerardo N. M., Currie C. R., Price S. L., Mueller U. G.. 2004; Exploiting a mutualism: parasite specialization on cultivars within the fungus-growing ants symbiosis. Proc R Soc B B271:1791–1798[CrossRef]
    [Google Scholar]
  18. Ghazifard A., Kasra-Kermanshahi R., Far Z. E.. 2001; Identification of thermophilic and mesophilic bacteria and fungi in Esfahan (Iran) municipal solid waste compost. Waste Management & Research 19:257–261 [CrossRef]
    [Google Scholar]
  19. Glass N. L., Donaldson G. C.. 1995; Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol61:1323–1330[PubMed]
    [Google Scholar]
  20. Hultman J., Vasara T., Partanen P., Kurola J., Kontro M. H., Paulin L., Auvinen P., Romantschuk M.. 2010; Determination of fungal succession during municipal solid waste composting using a cloning-based analysis. J Appl Microbiol108:472–487 [CrossRef][PubMed]
    [Google Scholar]
  21. Jiménez E. I., García V. P.. 1992; Relationships between organic carbon and total organic matter in municipal solid wastes and city refuse composts. Bioresour Technol41:265–272 [CrossRef]
    [Google Scholar]
  22. Karnaouri A., Topakas E., Antonopoulou I., Christakopoulos P.. 2014; Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila. Front Microbiol5: [CrossRef][PubMed]
    [Google Scholar]
  23. Kasana R. C., Salwan R., Dhar H., Dutt S., Gulati A.. 2008; A rapid and easy method for the detection of microbial cellulases on agar plates using gram's iodine. Curr Microbiol57:503–507 [CrossRef][PubMed]
    [Google Scholar]
  24. Langarica-Fuentes A., Zafar U., Heyworth A., Brown T., Fox G., Robson G. D., Box G.. 2014a; Fungal succession in an in-vessel composting system characterized using 454 pyrosequencing. FEMS Microbiol Ecol88:296–308 [CrossRef]
    [Google Scholar]
  25. Langarica-Fuentes A., Handley P. S., Houlden A., Fox G., Robson G. D., Foz G.. 2014b; An investigation of the biodiversity of thermophilic and thermotolerant fungal species in composts using culture-based and molecular techniques. Fungal Ecol11:132–144 [CrossRef]
    [Google Scholar]
  26. Langarica-Fuentes A., Fox G., Robson G. D.. 2015; Metabarcoding analysis of home composts reveals distinctive fungal communities with a high number of unassigned sequences. Microbiology161:1921–1932 [CrossRef][PubMed]
    [Google Scholar]
  27. McBride M. B., Prado R. M., Caione G., Campos C. N. S.. 2013; Arsenic and lead uptake by vegetable crops grown on historically contaminated orchard soils. Appl Environ Soil Sci2013: [CrossRef][PubMed]
    [Google Scholar]
  28. Mchunu N. P., Permaul K., Abdul Rahman A. Y., Saito J. A., Singh S., Alam M., Rahman A. Y. A.. 2013; Xylanase superproducer: genome sequence of a compost-loving thermophilic fungus, Thermomyces lanuginosus strain SSBP. Genome Announc1:e00388-13 [CrossRef]
    [Google Scholar]
  29. Mckay A. M.. 1988; A fungal assay method for the detection of fungal polygalacturonase secretion. FEMS Microbiol Lett55:355–358[CrossRef]
    [Google Scholar]
  30. Mehta C. M., Palni U., Franke-Whittle I. H., Sharma A. K.. 2014; Compost: its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag34:607–622 [CrossRef][PubMed]
    [Google Scholar]
  31. Moretti M. M., Bocchini-Martins D. A., Silva R. D., Rodrigues A., Sette L. D., Gomes E.. 2012; Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Braz J Microbiol43:1062–1071 [CrossRef][PubMed]
    [Google Scholar]
  32. Morgulis A., Coulouris G., Raytselis Y., Madden T. L., Agarwala R., Schäffer A. A.. 2008; Database indexing for production MegaBLAST searches. Bioinformatics15:1757–1764[CrossRef]
    [Google Scholar]
  33. Möller E. M., Bahnweg G., Sandermann H., Geiger H. H.. 1992; A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res20:6115–6116 [CrossRef][PubMed]
    [Google Scholar]
  34. Nelson D. W., Sommers L. E.. 1982; Total carbon, organic carbon and organic matter. In Methods of Soil Analysis Edited by Page A. L.. Madison: Part II American Society of Agronomers;
    [Google Scholar]
  35. Oliveira T. B., Gomes E., Rodrigues A.. 2015; Thermophilic fungi in the new age of fungal taxonomy. Extremophiles19:31–37 [CrossRef][PubMed]
    [Google Scholar]
  36. Salar R. K., Aneja K. R.. 2007; Thermophilic fungi: taxonomy and biogeography. Journal of Agricultural Technology3:77–107
    [Google Scholar]
  37. Song M. J., Lee J. H., Lee N. Y.. 2011; Fatal Scedosporium prolificans infection in a paediatric patient with acute lymphoblastic leukaemia. Mycoses54:81–83 [CrossRef][PubMed]
    [Google Scholar]
  38. Strauss M. L., Jolly N. P., Lambrechts M. G., van Rensburg P.. 2001; Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J Appl Microbiol91:182–190[PubMed][CrossRef]
    [Google Scholar]
  39. Thornton C. R., Ryder L. S., Le Cocq K., Soanes D. M.. 2015; Identifying the emerging human pathogen Scedosporium prolificans by using a species-specific monoclonal antibody that binds to the melanin biosynthetic enzyme tetrahydroxynaphthalene reductase. Environ Microbiol17:1023–1038 [CrossRef][PubMed]
    [Google Scholar]
  40. Tiquia S. M.. 2005; Microbial community dynamics in manure composts based on 16s and 18s rdna t-rflp profiles. Environ Tech27:1101–1114[CrossRef]
    [Google Scholar]
  41. van den Brink J., van Muiswinkel G. C., Theelen B., Hinz S. W., de Vries R. P.. 2013; Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica. Appl Environ Microbiol79:1316–1324 [CrossRef][PubMed]
    [Google Scholar]
  42. Wang Q., Garrity G. M., Tiedje J. M., Cole J. R.. 2007; Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol73:5261–5267 [CrossRef][PubMed]
    [Google Scholar]
  43. White T. J., Bruns T., Lee S., Taylor J.. 1990; Amplification and Direct 599 Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications , pp.315–332 Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J.. New York: Academic Press;
    [Google Scholar]
  44. Zhou P., Zhang G., Chen S., Jiang Z., Tang Y., Henrissat B., Yan Q., Yang S., Chen C. F. et al. 2014; Genome sequence and transcriptome analyses of the thermophilic zygomycete fungus Rhizomucor miehei. BMC Genomics15:294 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000306
Loading
/content/journal/micro/10.1099/mic.0.000306
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error