1887

Abstract

Escherichia coli has an l-alanine export system that protects the cells from toxic accumulation of intracellular l-alanine in the presence of l-alanyl-l-alanine (l-Ala-l-Ala). When a DadA-deficient strain was incubated with 6.0 mM l-Ala-l-Ala, we detected l-alanine and d-alanine using high-performance liquid chromatography (HPLC) analysis at a level of 7.0 mM and 3.0 mM, respectively, after 48 h incubation. Treatment of the culture supernatant with d-amino acid oxidase resulted in the disappearance of a signal corresponding to d-alanine. Additionally, the culture supernatant enabled a d-alanine auxotroph to grow without d-alanine supplementation, confirming that the signal detected by HPLC was authentic d-alanine. Upon introduction of an expression vector harbouring the alanine racemase genes, alr or dadX, the extracellular level of d-alanine increased to 11.5 mM and 8.5 mM, respectively, under similar conditions, suggesting that increased metabolic flow from l-alanine to d-alanine enhanced d-alanine secretion. When high-density DadA-deficient cells preloaded with l-Ala-l-Ala were treated with 20 µM carbonyl cyanide m-chlorophenyl hydrazone (CCCP), secretion of both l-alanine and d-alanine was enhanced ~twofold compared with that in cells without CCCP treatment. In contrast, the ATPase inhibitor dicyclohexylcarbodiimide did not exert such an effect on the l-alanine and d-alanine secretion. Furthermore, inverted membrane vesicles prepared from DadA-deficient cells lacking the l-alanine exporter AlaE accumulated [H]D-alanine in an energy-dependent manner. This energy-dependent accumulation of [H]D-alanine was strongly inhibited by CCCP. These results indicate that E. coli has a transport system(s) that exports d-alanine and that this function is most likely modulated by proton electrochemical potential.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000305
2016-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/7/1243.html?itemId=/content/journal/micro/10.1099/mic.0.000305&mimeType=html&fmt=ahah

References

  1. Aberhart D. J., Cotting J. A., Lin H. J..( 1985;). Separation by high-performance liquid chromatography of (3R)- and (3S)-beta-leucine as diastereomeric derivatives. . Anal Biochem 151: 88–91. [PubMed] [CrossRef]
    [Google Scholar]
  2. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H..( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. . Molecular Systems Biology 2:. [CrossRef]
    [Google Scholar]
  3. Cava F., Lam H., de Pedro M. A., Waldor M. K..( 2011;). Emerging knowledge of regulatory roles of D-amino acids in bacteria. . Cell Mol Life Sci 68: 817–831. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cherepanov P. P., Wackernagel W..( 1995;). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. . Gene 158: 9–14. [CrossRef] [PubMed]
    [Google Scholar]
  5. Dassler T., Maier T., Winterhalter C., Böck A..( 2000;). Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway. . Mol Microbiol 36: 1101–1112.[PubMed] [CrossRef]
    [Google Scholar]
  6. Datsenko K. A., Wanner B. L..( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97: 6640–6645. [CrossRef] [PubMed]
    [Google Scholar]
  7. Doroshenko V., Airich L., Vitushkina M., Kolokolova A., Livshits V., Mashko S..( 2007;). YddG from Escherichia coli promotes export of aromatic amino acids. . FEMS Microbiol Lett 275: 312–318. [CrossRef] [PubMed]
    [Google Scholar]
  8. Fisher R., Tuli R., Haselkorn R..( 1981;). A cloned cyanobacterial gene for glutamine synthetase functions in Escherichia coli, but the enzyme is not adenylylated. . Proc Natl Acad Sci U S A 78: 3393–3397.[PubMed] [CrossRef]
    [Google Scholar]
  9. Guan L., Nurva S., Ankeshwarapu S. P..( 2011;). Mechanism of melibiose/cation symport of the melibiose permease of Salmonella typhimurium. . J Biol Chem 286: 6367–6374. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hori H., Ando T., Isogai E., Yoneyama H., Katsumata R..( 2011a;). Identification of an L-alanine export system in Escherichia coli and isolation and characterization of export-deficient mutants. . FEMS Microbiol Lett 316: 83–89. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hori H., Yoneyama H., Tobe R., Ando T., Isogai E., Katsumata R..( 2011b;). Inducible l-alanine exporter encoded by the novel gene ygaW (alaE) in Escherichia coli. . Appl Environ Microbiol 77: 4027–4034. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kaback H. R., Barnes E. M..( 1971;). Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in membrane preparations from Escherichia coli. . J Biol Chem 246: 5523–5531.[PubMed]
    [Google Scholar]
  13. Kaback H. R., Reeves J. P., Short S. A., Lombardi F. J..( 1974;). Mechanisms of active transport in isolated bacterial membrane vesicles. 18. The mechanism of action of carbonylcyanide m-chlorophenylhydrazone. . Arch Biochem Biophys 160: 215–222.[PubMed] [CrossRef]
    [Google Scholar]
  14. Kennerknecht N., Sahm H., Yen M. R., Pátek M., Saier M. H., Eggeling L..( 2002;). Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. . J Bacteriol 184: 3947–3956.[PubMed] [CrossRef]
    [Google Scholar]
  15. Kim S., Ihara K., Katsube S., Hori H., Ando T., Isogai E., Yoneyama H..( 2015;). Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives. . Microbiologyopen 4: 632–643. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kinoshita S., Udaka S., Shimono M..( 1957;). Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms. . J Gen Appl Microbiol 3: 193–205.[PubMed] [CrossRef]
    [Google Scholar]
  17. Kitagawa M., Ara T., Arifuzzaman M., Ioka-Nakamichi T., Inamoto E., Toyonaga H., Mori H..( 2005;). Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. . DNA Res 12: 291–299. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kolodkin-Gal I., Romero D., Cao S., Clardy J., Kolter R., Losick R..( 2010;). D-amino acids trigger biofilm disassembly. . Science 328: 627–629. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kutukova E. A., Livshits V. A., Altman I. P., Ptitsyn L. R., Zyiatdinov M. H., Tokmakova I. L., Zakataeva N. P..( 2005;). The yeaS (leuE) gene of Escherichia coli encodes an exporter of leucine, and the Lrp protein regulates its expression. . FEBS Lett 579: 4629–4634. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lam H., Oh D. C., Cava F., Takacs C. N., Clardy J., de Pedro M. A., Waldor M. K..( 2009;). D-amino acids govern stationary phase cell wall remodeling in bacteria. . Science 325: 1552–1555. [CrossRef] [PubMed]
    [Google Scholar]
  21. Livshits V. A., Zakataeva N. P., Aleshin V. V., Vitushkina M. V..( 2003;). Identification and characterization of the new gene rhtA involved in threonine and homoserine efflux in Escherichia coli. . Res Microbiol 154: 123–135. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lombardi F. J., Kaback H. R..( 1972;). Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli. . J Biol Chem 247: 7844–7857.[PubMed]
    [Google Scholar]
  23. Marfey P..( 1984;). Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. . Carlsberg Res Commun 49: 591–596. [CrossRef]
    [Google Scholar]
  24. Nakamura J., Hirano S., Ito H., Wachi M..( 2007;). Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. . Appl Environ Microbiol 73: 4491–4498. [CrossRef] [PubMed]
    [Google Scholar]
  25. Nandineni M. R., Gowrishankar J..( 2004;). Evidence for an arginine exporter encoded by yggA (argO) that is regulated by the LysR-type transcriptional regulator ArgP in Escherichia coli. . J Bacteriol 186: 3539–3546. [CrossRef] [PubMed]
    [Google Scholar]
  26. Park J. T..( 1996;). The Murein Sacculus, , 2nd edn.. Washington, DC:: ASM Press;.
    [Google Scholar]
  27. Robbins J. C., Oxender D. L..( 1973;). Transport systems for alanine, serine, and glycine in Escherichia coli K-12. . J Bacteriol 116: 12–18.[PubMed]
    [Google Scholar]
  28. Simic P., Sahm H., Eggeling L..( 2001;). L-threonine export: use of peptides to identify a new translocator from Corynebacterium glutamicum. . J Bacteriol 183: 5317–5324.[PubMed] [CrossRef]
    [Google Scholar]
  29. Strych U., Penland R. L., Jimenez M., Krause K. L., Benedik M. J..( 2001;). Characterization of the alanine racemases from two mycobacteria. . FEMS Microbiol Lett 196: 93–98. [CrossRef] [PubMed]
    [Google Scholar]
  30. Stäbler N., Oikawa T., Bott M., Eggeling L..( 2011;). Corynebacterium glutamicum as a host for synthesis and export of D-amino acids. . J Bacteriol 193: 1702–1709. [CrossRef] [PubMed]
    [Google Scholar]
  31. Vrljic M., Sahm H., Eggeling L..( 1996;). A new type of transporter with a new type of cellular function: l-lysine export from Corynebacterium glutamicum. . Mol Microbiol 22: 815–826.[PubMed] [CrossRef]
    [Google Scholar]
  32. Wild J., Filutowicz M., Kłopotowski T..( 1978;). Utilization of D-amino acids by dadR mutants of Salmonella typhimurium. . Arch Microbiol 118: 71–77.[PubMed] [CrossRef]
    [Google Scholar]
  33. Wild J., Hennig J., Lobocka M., Walczak W., Kłopotowski T..( 1985;). Identification of the dadX gene coding for the predominant isozyme of alanine racemase in Escherichia coli K12. . Mol Gen Genet 198: 315–322.[PubMed] [CrossRef]
    [Google Scholar]
  34. Zhang X., Jantama K., Moore J. C., Shanmugam K. T., Ingram L. O..( 2007;). Production of L-alanine by metabolically engineered Escherichia coli. . Appl Microbiol Biotechnol 77: 355–366. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000305
Loading
/content/journal/micro/10.1099/mic.0.000305
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error