1887

Abstract

Utilization of hydroxy--proline (-Hyp) in requires conversion of -Hyp to-Hyp followed by the-Hyp dehydrogenase pathway; however, the molecular mechanism in control of -Hyp catabolism and transport was not clear. DNA microarray analysis revealed twelve genes in two adjacent loci that were induced by exogenous -Hyp and -Hyp. The first locus includes encoding a Hyp epimerase (LhpA) and -Hyp dehydrogenase (LhpBEF), while the second locus codes for a putative ABC transporter (LhpPMNO), a protein of unknown function (LhpH), Hyp/Pro racemase (LhpK) and two enzymes in -Hyp catabolism (LhpC and LhpG). Proximal to these two loci, encodes a transcriptional regulator of the AraC family. The importance of these genes on -Hyp catabolism was supported by growth phenotype analysis on knockout mutants. Induction of the and promoters by exogenous-Hyp and -Hyp was demonstrated by the measurement of β-galactosidase activities from promoter- fusions in PAO1, and no induction could be detected in the Δ mutant. Induction of the promoter by -Hyp was completely abolished in the double mutant devoid of two epimerases, while the induction effect of-Hyp remained unchanged. The purified His-tagged LhpR binds specifically to the promoter regions, and formation of nucleoprotein complexes is affected by the presence of -Hyp but not -Hyp. Putative LhpR binding sites were deduced from serial deletions and comparative genomic sequence analysis. In summary, expression of genes for Hyp catabolism and uptake requires the transcriptional activator LhpR and-Hyp as the signalling compound.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000300
2016-07-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/7/1232.html?itemId=/content/journal/micro/10.1099/mic.0.000300&mimeType=html&fmt=ahah

References

  1. Adams E., Frank L.. 1980; Metabolism of proline and the hydroxyprolines. Annu Rev Biochem49:1005–1061 [CrossRef][PubMed]
    [Google Scholar]
  2. Benhamou N., Lafontaine P. J., Mazau D., Esquerré-Tugayé M. T.. 1991; Differential accumulation of hydroxyproline-rich glycoproteins in bean root nodule cells infected with a wild-type strain or a C4-dicarboxylic acid mutant of Rhizobium leguminosarum bv. phaseoli. Planta184:457–467 [CrossRef][PubMed]
    [Google Scholar]
  3. Chen S., White C. E., diCenzo G. C., Zhang Y., Stogios P. J., Savchenko A., Finan T. M.. 2016; l-Hydroxyproline and d-Proline Catabolism in Sinorhizobium meliloti. J Bacteriol198:1171–1181 [CrossRef][PubMed]
    [Google Scholar]
  4. Chou H. T., Kwon D. H., Hegazy M., Lu C. D.. 2008; Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol190:1966–1975 [CrossRef][PubMed]
    [Google Scholar]
  5. Chou H. T., Hegazy M., Lu C. D.. 2010; L-lysine catabolism is controlled by L-arginine and ArgR in Pseudomonas aeruginosa PAO1. J Bacteriol192:5874–5880 [CrossRef][PubMed]
    [Google Scholar]
  6. Farinha M. A., Kropinski A. M.. 1990; Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol172:3496–3499[PubMed]
    [Google Scholar]
  7. Gallegos M. T., Schleif R., Bairoch A., Hofmann K., Ramos J. L.. 1997; Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev61:393–410[PubMed]
    [Google Scholar]
  8. Gorres K. L., Raines R. T.. 2010; Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol45:106–124 [CrossRef][PubMed]
    [Google Scholar]
  9. Goytia M., Chamond N., Cosson A., Coatnoan N., Hermant D., Berneman A., Minoprio P.. 2007; Molecular and structural discrimination of proline racemase and hydroxyproline-2-epimerase from nosocomial and bacterial pathogens. PLoS One2:e885 [CrossRef][PubMed]
    [Google Scholar]
  10. Haas D., Holloway B. W., Schamböck A., Leisinger T.. 1977; The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet154:7–22 [CrossRef][PubMed]
    [Google Scholar]
  11. He W., Li G., Yang C. K., Lu C. D.. 2014; Functional characterization of the dguRABC locus for D-Glu and d-Gln utilization in Pseudomonas aeruginosa PAO1. Microbiology160:2331–2340 [CrossRef][PubMed]
    [Google Scholar]
  12. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P.. 1998; A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene212:77–86 [CrossRef][PubMed]
    [Google Scholar]
  13. Hudson D. M., Eyre D. R.. 2013; Collagen prolyl 3-hydroxylation: a major role for a minor post-translational modification?. Connect Tissue Res54:245–251 [CrossRef][PubMed]
    [Google Scholar]
  14. Jacobs M. A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C. et al. 2003; Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A100:14339–14344 [CrossRef][PubMed]
    [Google Scholar]
  15. Johnson D. A., Tetu S. G., Phillippy K., Chen J., Ren Q., Paulsen I. T.. 2008; High-throughput phenotypic characterization of Pseudomonas aeruginosa membrane transport genes. PLoS Genet4:e1000211 [CrossRef][PubMed]
    [Google Scholar]
  16. Kruger N. J.. 1994; The Bradford method for protein quantitation. Methods Mol Biol32:9–15 [CrossRef][PubMed]
    [Google Scholar]
  17. Li C., Lu C. D.. 2009; Arginine racemization by coupled catabolic and anabolic dehydrogenases. Proc Natl Acad Sci U S A106:906–911 [CrossRef][PubMed]
    [Google Scholar]
  18. Maclean A. M., White C. E., Fowler J. E., Finan T. M.. 2009; Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti. Mol Plant-Microbe Interact22:1116–1127 [CrossRef][PubMed]
    [Google Scholar]
  19. Muramatsu H., Mihara H., Kakutani R., Yasuda M., Ueda M., Kurihara T., Esaki N.. 2005; The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline. J Biol Chem280:5329–5335 [CrossRef][PubMed]
    [Google Scholar]
  20. Radkov A. D., Moe L. A.. 2013; Amino acid racemization in Pseudomonas putida KT2440. J Bacteriol195:5016–5024 [CrossRef][PubMed]
    [Google Scholar]
  21. Satomura T., Ishikura M., Koyanagi T., Sakuraba H., Ohshima T., Suye S.. 2015; Dye-linked D-amino acid dehydrogenase from the thermophilic bacterium Rhodothermus marinus JCM9785: characteristics and role in trans-4-hydroxy-L-proline catabolism. Appl Microbiol Biotechnol99:4265–4275 [CrossRef][PubMed]
    [Google Scholar]
  22. Schweizer H. P.. 1991; Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene97:109–121 [CrossRef][PubMed]
    [Google Scholar]
  23. Visser W. F., Verhoeven-Duif N. M., de Koning T. J.. 2012; Identification of a human trans-3-hydroxy-L-proline dehydratase, the first characterized member of a novel family of proline racemase-like enzymes. J Biol Chem287:21654–21662 [CrossRef][PubMed]
    [Google Scholar]
  24. Watanabe S., Morimoto D., Fukumori F., Shinomiya H., Nishiwaki H., Kawano-Kawada M., Sasai Y., Tozawa Y., Watanabe Y.. 2012; Identification and characterization of D-hydroxyproline dehydrogenase and Delta1-pyrroline-4-hydroxy-2-carboxylate deaminase involved in novel L-hydroxyproline metabolism of bacteria: metabolic convergent evolution. J Biol Chem287:32674–32688 [CrossRef][PubMed]
    [Google Scholar]
  25. Watanabe S., Tanimoto Y., Yamauchi S., Tozawa Y., Sawayama S., Watanabe Y.. 2014; Identification and characterization of trans-3-hydroxy-l-proline dehydratase and Δ(1)-pyrroline-2-carboxylate reductase involved in trans-3-hydroxy-l-proline metabolism of bacteria. FEBS Open Bio4:240–250 [CrossRef][PubMed]
    [Google Scholar]
  26. White C. E., Gavina J. M., Morton R., Britz-McKibbin P., Finan T. M.. 2012; Control of hydroxyproline catabolism in Sinorhizobium meliloti. Mol Microbiol85:1133–1147 [CrossRef][PubMed]
    [Google Scholar]
  27. Winsor G. L., Griffiths E. J., Lo R., Dhillon B. K., Shay J. A., Brinkman F. S.. 2016; Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res44:D646–653 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000300
Loading
/content/journal/micro/10.1099/mic.0.000300
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error