1887

Abstract

, which is associated with skin conditions such as dandruff and seborrhoeic dermatitis, possesses 13 secreted lipases, but only Lip1, MDL2 and Lip2 have been characterized. To understand the substrate preferences of these lipases and by extension their potential role in colonizing human skin, we expressed all 13 predicted secreted lipases in and evaluated their ability to utilize mono-, di- and triolein substrates. The family class 3 lipases were shown to be specific for mono- and diacylglycerols, but exhibited no regio-selective production of diacylglycerols, which are of special interest for industrial applications. Lipases belonging to the Lip family utilized all substrates. In a further step, five lipases previously demonstrated to be expressed on human skin were tested against the eight most common di- and triacylglycerols in human sebum. All lipases liberated free fatty acids from three to eight of these substrates, proving their ability to hydrolyse key components of human sebum. Again, only Lip family lipases showed activity on triacylglycerides. Based on the demonstrated activity and expression levels of Lip2 in , the Lip lipase family appears to have the highest impact for the pathogenicity of

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000299
2016-07-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/7/1069.html?itemId=/content/journal/micro/10.1099/mic.0.000299&mimeType=html&fmt=ahah

References

  1. Ashbee H. R., Evans E. G.. 2002; Immunology of diseases associated with Malassezia species. Clin Microbiol Rev15:21–57 [CrossRef][PubMed]
    [Google Scholar]
  2. Batra R., Boekhout T., Guého E., Cabañes F. J., Dawson T. L. Jr, Gupta A. K.. 2005; Malassezia Baillon, emerging clinical yeasts. FEMS Yeast Res5:1101–1113 [CrossRef]
    [Google Scholar]
  3. Bisogno T., Howell F., Williams G., Minassi A., Cascio M. G., Ligresti A., Matias I., Schiano-Moriello A., Paul P. et al. 2003; Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol163:463–468 [CrossRef][PubMed]
    [Google Scholar]
  4. Blom N., Sicheritz-Pontén T., Gupta R., Gammeltoft S., Brunak S.. 2004; Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics4:1633–1649 [CrossRef][PubMed]
    [Google Scholar]
  5. Boekhout T., Guého-Kellermann E., Mayser P., Velegraki A.. 2010; Malassezia and the Skin: Science and Clinical Practice Berlin: Springer;[CrossRef]
    [Google Scholar]
  6. Cafarchia C., Otranto D.. 2008; The pathogenesis of Malassezia yeasts. Parassitologia50:65–67[PubMed]
    [Google Scholar]
  7. Chen T. A., Hill P. B.. 2005; The biology of Malassezia organisms and their ability to induce immune responses and skin disease. Vet Dermatol16:4–26 [CrossRef][PubMed]
    [Google Scholar]
  8. DeAngelis Y. M., Gemmer C. M., Kaczvinsky J. R., Kenneally D. C., Schwartz J. R., Dawson T. L.. 2005; Three etiologic facets of dandruff and seborrheic dermatitis: Malassezia fungi, sebaceous lipids, and individual sensitivity. J Investig Dermatol Symp Proc10:295–297 [CrossRef][PubMed]
    [Google Scholar]
  9. DeAngelis Y. M., Saunders C. W., Johnstone K. R., Reeder N. L., Coleman C. G., Kaczvinsky J. R., Gale C., Walter R., Mekel M. et al. 2007; Isolation and expression of a Malassezia globosa lipase gene, LIP1. J Invest Dermatol127:2138–2146 [CrossRef][PubMed]
    [Google Scholar]
  10. Derewenda Z. S.. 1994; Structure and function of lipases. Adv Protein Chem45:1–52[PubMed][CrossRef]
    [Google Scholar]
  11. Derewenda Z. S., Derewenda U.. 1991; Relationships among serine hydrolases: evidence for a common structural motif in triacylglyceride lipases and esterases. Biochem Cell Biol69:842–851 [CrossRef][PubMed]
    [Google Scholar]
  12. Finn R. D., Bateman A., Clements J., Coggill P., Eberhardt R. Y., Eddy S. R., Heger A., Hetherington K., Holm L. et al. 2014; Pfam: the protein families database. Nucleic Acids Res42:D222–D230 [CrossRef][PubMed]
    [Google Scholar]
  13. Flickinger B. D., Matsuo N.. 2003; Nutritional characteristics of DAG oil. Lipids38:129–132 [CrossRef][PubMed]
    [Google Scholar]
  14. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M., Appel R., Bairoch A.. 2005; The Proteomics Protocols Handbook Edited by Walker J. M.. Totowa, NJ: Humana Press;
    [Google Scholar]
  15. Guého E., Boekhout T., Ashbee H. R., Guillot J., Van Belkum A., Faergemann J.. 1998; The role of Malassezia species in the ecology of human skin and as pathogens. Med Mycol36:220–229[PubMed]
    [Google Scholar]
  16. Guillot J., Hadina S., Guého E.. 2008; The genus Malassezia: old facts and new concepts. Parassitologia50:77–79[PubMed]
    [Google Scholar]
  17. Hama S., Numata T., Tamalampudi S., Yoshida A., Noda H., Kondo A., Fukuda H.. 2009; Use of mono- and diacylglycerol lipase as immobilized fungal whole cells to convert residual partial glycerides enzymatically into fatty acid methyl esters. J Mol Catal B: Enzym58:93–97 [CrossRef]
    [Google Scholar]
  18. Harding C. R., Moore A. E., Rogers J. S., Meldrum H., Scott A. E., McGlone F. P.. 2002; Dandruff: a condition characterized by decreased levels of intercellular lipids in scalp stratum corneum and impaired barrier function. Arch Dermatol Res294:221–230 [CrossRef][PubMed]
    [Google Scholar]
  19. Hort W., Mayser P.. 2011; Malassezia virulence determinants. Curr Opin Infect Dis24:100–105 [CrossRef][PubMed]
    [Google Scholar]
  20. Huang J., Yang Z., Guan F., Zhang S., Cui D., Guan G., Li Y.. 2013; A novel mono- and diacylglycerol lipase highly expressed in Pichia pastoris and its application for food emulsifier preparation. Process Biochem48:1899–1904 [CrossRef]
    [Google Scholar]
  21. Juntachai W., Oura T., Kajiwara S.. 2011; Purification and characterization of a secretory lipolytic enzyme, MgLIP2, from Malassezia globosa. Microbiology157:3492–3499 [CrossRef][PubMed]
    [Google Scholar]
  22. Kelley L. A., Sternberg M. J.. 2009; Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc4:363–371 [CrossRef][PubMed]
    [Google Scholar]
  23. Kesavan S., Holland K. T., Ingham E.. 2000; The effects of lipid extraction on the immunomodulatory activity of Malassezia species in vitro. Med Mycol38:239–247 [CrossRef][PubMed]
    [Google Scholar]
  24. Kieffer M., Bergbrant I. M., Faergemann J., Jemec G. B., Ottevanger V., Stahl Skov P., Svejgaard E.. 1990; Immune reactions to Pityrosporum ovale in adult patients with atopic and seborrheic dermatitis. J Am Acad Dermatol22:739–742 [CrossRef][PubMed]
    [Google Scholar]
  25. Kohnz R. A., Nomura D. K.. 2014; Chemical approaches to therapeutically target the metabolism and signaling of the endocannabinoid 2-AG and eicosanoids. Chem Soc Rev43:6859–6869 [CrossRef][PubMed]
    [Google Scholar]
  26. Lambers H., Piessens S., Bloem A., Pronk H., Finkel P.. 2006; Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci28:359–370 [CrossRef][PubMed]
    [Google Scholar]
  27. Lan D., Popowicz G. M., Pavlidis I. V., Zhou P., Bornscheuer U. T., Wang Y.. 2015; Conversion of a mono- and diacylglycerol lipase into a triacylglycerol lipase by protein engineering. ChemBioChem16:1431–1434 [CrossRef][PubMed]
    [Google Scholar]
  28. Le S. Q., Gascuel O.. 2008; An improved general amino acid replacement matrix. Mol Biol Evol25:1307–1320 [CrossRef][PubMed]
    [Google Scholar]
  29. Lenfant N., Hotelier T., Velluet E., Bourne Y., Marchot P., Chatonnet A.. 2013; ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Res41:D423–D429 [CrossRef][PubMed]
    [Google Scholar]
  30. McWilliam H., Li W., Uludag M., Squizzato S., Park Y. M., Buso N., Cowley A. P., Lopez R.. 2013; Analysis tool Web Services from the EMBL-EBI. Nucleic Acids Res41:W597–W600 [CrossRef][PubMed]
    [Google Scholar]
  31. Midgley G.. 2000; The lipophilic yeasts: state of the art and prospects. Med Mycol38:9–16[PubMed][CrossRef]
    [Google Scholar]
  32. Plasencia I., Norlén L., Bagatolli L. A.. 2007; Direct visualization of lipid domains in human skin stratum corneum's lipid membranes: effect of pH and temperature. Biophys J93:3142–3155 [CrossRef][PubMed]
    [Google Scholar]
  33. Petersen T. N., Brunak S., von Heijne G., Nielsen H.. 2011; SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods8:785–786 [CrossRef][PubMed]
    [Google Scholar]
  34. Ro B. I., Dawson T. L.. 2005; The role of sebaceous gland activity and scalp microfloral metabolism in the etiology of seborrheic dermatitis and dandruff. J Investig Dermatol Symp Proc10:194–197 [CrossRef][PubMed]
    [Google Scholar]
  35. Rogers J. S., Moore A. E., Meldrum H., Harding C. R.. 2003; Increased scalp skin lipids in response to antidandruff treatment containing zinc pyrithione. Arch Dermatol Res295:127–129 [CrossRef][PubMed]
    [Google Scholar]
  36. Shuster S.. 1984; The aetiology of dandruff and the mode of action of therapeutic agents. Br J Dermatol111:235–242 [CrossRef][PubMed]
    [Google Scholar]
  37. Skropeta D., Settasatian C., McMahon M. R., Shearston K., Caiazza D., McGrath K. C., Jin W., Rader D. J., Barter P. J. et al. 2007; N-Glycosylation regulates endothelial lipase-mediated phospholipid hydrolysis in apoE- and apoA-I-containing high density lipoproteins. J Lipid Res48:2047–2057 [CrossRef][PubMed]
    [Google Scholar]
  38. Sommer, Overy D. P., Kerr R. G.. 2015; Identification and characterization of lipases from Malassezia restricta, a causative agent of dandruff. FEMS Yeast Res15:fov078 [CrossRef][PubMed]
    [Google Scholar]
  39. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  40. Whelan S., Goldman N.. 2001; A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol18:691–699 [CrossRef][PubMed]
    [Google Scholar]
  41. Xu J., Saunders C. W., Hu P., Grant R. A., Boekhout T., Kuramae E. E., Kronstad J. W., Deangelis Y. M., Reeder N. L. et al. 2007; Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci U S A104:18730–18735 [CrossRef][PubMed]
    [Google Scholar]
  42. Xu D., Sun L., Chen H., Lan D., Wang Y., Yang B.. 2012a; Enzymatic synthesis of diacylglycerols enriched with conjugated linoleic acid by a novel lipase from Malassezia globosa. J Am Oil Chem Soc89:1259–1266
    [Google Scholar]
  43. Xu T., Liu L., Hou S., Xu J., Yang B., Wang Y., Liu J.. 2012b; Crystal structure of a mono- and diacylglycerol lipase from Malassezia globosa reveals a novel lid conformation and insights into the substrate specificity. J Struct Biol178:363–369 [CrossRef]
    [Google Scholar]
  44. Xu H., Lan D., Yang B., Wang Y.. 2015; Biochemical properties and structure analysis of a DAG-like lipase from Malassezia globosa. Int J Mol Sci16:4865–4879 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000299
Loading
/content/journal/micro/10.1099/mic.0.000299
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error