1887

Abstract

Fatty acid biosynthesis during the life cycle of the ascomycetous yeast cultivated on a non-fermentable substrate, i.e. glycerol, in nitrogen rich media (NRM) and nitrogen limited media (NLM) has been studied. Although considerable activities of key lipogenic enzymes, such as ATP citrate lyase (ACL) and malic enzyme (ME), were detected in vegetative cells during asexual proliferation (which occurred in the first growth stages in both NRM and NLM), lipid accumulation was restricted due to the high activities of NAD-isocitrate dehydrogenase (NAD-ICDH). A similar enzymatic profile has been found in ascii and free ascospores produced in NRM; thus lipid accumulation was low. On the contrary, very high activities of both ACL and ME and low activities of NAD-ICDH were detected in ascii and free ascospores produced in NLM resulting in lipid accumulation. Neutral lipids (NL) were the predominant fraction of cellular lipids produced in vegetative cells and ascospores in both NRM and NLM. On the other hand, phospholipids (P) were the major polar lipids while glycolipids (G) were synthesized in low proportions. During transition from asexual to sexual phase, the percentage of NL increased with a significant decrease of P and, to a lesser extent, of G. High quantities of linoleic acid were found esterified in polar lipids, especially in P, during the vegetative stage of growth, while, with a few exceptions, during transition from asexual to sexual stage, linoleic acid concentration decreased markedly, mainly in P, while oleic acid concentration increased.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000298
2016-07-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/7/1080.html?itemId=/content/journal/micro/10.1099/mic.0.000298&mimeType=html&fmt=ahah

References

  1. AFNOR 1984; Recueil des Normes Françaises des Corps Gras, Grains Oléagineux et Produits Dérives, 3rd edn. p95 Paris: Association Française pour Normalisation;
    [Google Scholar]
  2. Arous F., Triantaphyllidou I.-E., Mechichi T., Azabou S., Nasri M., Aggelis G.. 2015; Lipid accumulation in the new oleaginous yeast Debaryomyces etchellsii correlates with ascosporogenesis. Biomass Bioenergy80:307–315 [CrossRef]
    [Google Scholar]
  3. Arous F., Azabou S., Triantaphyllidou I.-E., Aggelis G., Jaouani A., Nasri M., Mechichi T.. 2016; Newly isolated yeasts from Tunisian microhabitats: lipid accumulation and fatty acid composition. Eng Life Sci in press doi [CrossRef]
    [Google Scholar]
  4. Bellou S., Triantaphyllidou I. E., Aggeli D., Elazzazy A. M., Baeshen M. N., Aggelis G.. 2016; Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol37:24–35 [CrossRef][PubMed]
    [Google Scholar]
  5. Certik M., Shimizu S.. 1999; Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng87:1–14[PubMed][CrossRef]
    [Google Scholar]
  6. Chang G., Luo Z., Gu S., Wu Q., Chang M., Wang X.. 2013; Fatty acid shifts and metabolic activity changes of Schizochytrium sp. S31 cultured on glycerol. Bioresour Technol142:255–260 [CrossRef]
    [Google Scholar]
  7. Codón A. C., Gasent-Ramírez J. M., Benítez A.. 1995; Factors which affect the frequency of sporulation and tetrad formation in Saccharomyces cerevisiae baker’s yeasts. Appl Environ Microb61:630–638
    [Google Scholar]
  8. Croes A. F.. 1967; Induction of meiosis in yeast: I. Timing of cytological and biochemical events. Planta76:209–226 [CrossRef][PubMed]
    [Google Scholar]
  9. Dulermo T., Lazar Z., Dulermo R., Rakicka M., Haddouche R., Nicaud J. M.. 2015; Analysis of ATP-citrate lyase and malic enzymes mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis. Biochim Biophys Acta1851:1107–1117[CrossRef]
    [Google Scholar]
  10. Esposito R. E., Klapholz S.. 1981; Meiosis and ascospore development. In The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance pp.211–287 Edited by Strathern J. N., Jones E. W., Broach J. R.. Cold Spring Harbor: NY: Cold Spring Harbor Laboratory Press.:
    [Google Scholar]
  11. Fakas S., Papanikolaou S., Galiotou-Panayotou M., Komaitis M., Aggelis G.. 2006; Lipids of Cunninghamella echinulata with emphasis to γ-linolenic acid distribution among lipid classes. Appl Microbiol Biot73:676–683[CrossRef]
    [Google Scholar]
  12. Fakas S., Makri A., Mavromati M., Tselepi M., Aggelis G.. 2009; Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour Technol100:6118–6120 [CrossRef]
    [Google Scholar]
  13. Fendt S. M., Sauer U.. 2010; Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates. BMC Syst Biol4:12–22 [CrossRef][PubMed]
    [Google Scholar]
  14. Folch J., Lees M., Sloane-Stanley G. A.. 1957; Simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem199:833–841
    [Google Scholar]
  15. François J., Parrou J. L.. 2001; Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev25:125–145[PubMed][CrossRef]
    [Google Scholar]
  16. Gancedo J. M.. 1998; Yeast carbon catabolite repression. Microbiol Mol Biol Rev62:334–361[PubMed]
    [Google Scholar]
  17. Geer B. W., Krochko D., Oliver M. J., Walker V. K., Williamson J. H.. 1979; A comparative study of the NADP-malic enzymes from Drosophila and chick liver. Comp Biochem Phys65:25–34
    [Google Scholar]
  18. Honigberg S. M., Purnapatre K.. 2003; Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast. J Cell Sci116:2137–2147 [CrossRef][PubMed]
    [Google Scholar]
  19. Jambhekar A., Amon A.. 2008; Control of meiosis by respiration. Curr Biol18:969–975 [CrossRef][PubMed]
    [Google Scholar]
  20. Kim J. H., Block D. E., Mills D. A.. 2010; Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol88:1077–1085[CrossRef]
    [Google Scholar]
  21. Kock J. L., Ratledge C.. 1993; Changes in lipid composition and arachidonic acid turnover during the life cycle of the yeast Dipodascopsis uninucleata. J Gen Microbiol139:459–464 [CrossRef][PubMed]
    [Google Scholar]
  22. Kock J. L. F., Strauss C. J., Pretorius E. E., Pohl C. H., Bareetseng A. S., Botes P. J., Van Wyk P. W. J., Schoombie S. W., Nigam S.. 2004; Revealing yeast spore movement in confined space. S Afr J Sci100:237–240
    [Google Scholar]
  23. Kornberg A.. 1955; Isocitrate dehydrogenase of yeast (TPN): d-Isocitrate +TPN ⇄Oxalosuecinate + TPNH Oxalosuecinate ⇄ α-Ketoglutarate + CO2. Methods Enzymol1:705–709[CrossRef]
    [Google Scholar]
  24. Li Z., Sun H., Mo X., Li X., Xu B., Tian P.. 2013; Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis. Appl Microbiol Biotechnol97:4927–4936[CrossRef]
    [Google Scholar]
  25. Liu Z., Gao Y., Chen J., Imanaka T., Bao J., Hua Q.. 2013; Analysis of metabolic fluxes for better understanding of mechanisms related to lipid accumulation in oleaginous yeast Trichosporon cutaneum. Bioresour Technol130:144–151 [CrossRef]
    [Google Scholar]
  26. Makri A., Fakas S., Aggelis G.. 2010; Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour Technol101:2351–2358 [CrossRef]
    [Google Scholar]
  27. Miller J. J.. 1989; Sporulation in Saccharomyces cerevisiae. In The Yeastsvol. 3 pp.489–541 Edited by Rose A. H., Harrison J. S.. New York, NY: Academic Press;
    [Google Scholar]
  28. Papanikolaou S., Sarantou S., Komaitis M., Aggelis G.. 2004; Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. J Appl Microbiol97:867–875 [CrossRef][PubMed]
    [Google Scholar]
  29. Papanikolaou S., Aggelis G.. 2011; Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur J Lipid Sci Technol113:1031–1051[CrossRef]
    [Google Scholar]
  30. Ratledge C.. 2014; The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol Lett36:1557–1568 [CrossRef][PubMed]
    [Google Scholar]
  31. Rudolph A. S.. 1994; Biomaterial biotechnology using self-assembled lipid microstructures. J Cell Biochem56:183–187 [CrossRef][PubMed]
    [Google Scholar]
  32. Shen Y. Q., Burger G.. 2009; Plasticity of a key metabolic pathway in fungi. Funct Integr Genomic9:145–151[CrossRef]
    [Google Scholar]
  33. Smith D. P., Kock J. L., van Wyk P. W., Pohl C. H., van Heerden E., Botes P. J., Nigam S.. 2003; Oxylipins and ascospore morphology in the ascomycetous yeast genus Dipodascus. Antonie Van Leeuwenhoek83:317–325[PubMed][CrossRef]
    [Google Scholar]
  34. Srere P. A.. 1959; The citrate cleavage enzyme I. Distribution and purification. J Biol Chem234:2544–2547[PubMed]
    [Google Scholar]
  35. Stülke J., Hillen W.. 1999; Carbon catabolite repression in bacteria. Curr Opin Microbiol2:195–201 [CrossRef][PubMed]
    [Google Scholar]
  36. Vorapreeda T., Thammarongtham C., Cheevadhanarak S., Laoteng K.. 2012; Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: involvement in the lipid production of oleaginous yeast and fungi. Microbiology158:217–228 [CrossRef][PubMed]
    [Google Scholar]
  37. Wasylenko T. M., Ahn W. S., Stephanopoulos G.. 2015; The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab Eng30:27–39 [CrossRef][PubMed]
    [Google Scholar]
  38. Weinhandl K., Winkler M., Glieder A., Camattari A.. 2014; Carbon source dependent promoters in yeasts. Microb Cell Fact13:5–21 [CrossRef][PubMed]
    [Google Scholar]
  39. Wickerham L. J.. 1951; Taxonomy of Yeasts Tech. Bull. U.S. Dep. Agric. no.1029
    [Google Scholar]
  40. Zaman S., Lippman S. I., Zhao X., Broach J. R.. 2008; How Saccharomyces responds to nutrients. Annu Rev Genet42:27–81 [CrossRef][PubMed]
    [Google Scholar]
  41. Zhang Y., Adams I. P., Ratledge C.. 2007; Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology153:2013–2025 [CrossRef][PubMed]
    [Google Scholar]
  42. Zhang H., Zhang L., Chen H., Chen Y. Q., Ratledge C., Song Y., Chen W.. 2013; Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation. Biotechnol Lett35:2091–2098 [CrossRef][PubMed]
    [Google Scholar]
  43. Zhang H., Zhang L., Chen H., Chen Y. Q., Chen W., Song Y., Ratledge C.. 2014; Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP : citrate lyase from Mus musculus. J Biotechnol192:78–84 [CrossRef][PubMed]
    [Google Scholar]
  44. Zhu Z., Zhang S., Liu H., Shen H., Lin X., Yang F., Zhou Y. J., Jin G., Ye M. et al. 2012; A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun3:1112–1123 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000298
Loading
/content/journal/micro/10.1099/mic.0.000298
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error