Control of hexuronate metabolism in by the two interdependent regulators, ExuR and UxuR: derepression by heterodimer formation Free

Abstract

Two homologous proteins, UxuR and ExuR, were previously predicted to repress synthesis of enzymes required for hexuronic acid metabolism, but little is known about the relative roles of these proteins in gene regulation. We confirmed the previous report that UxuR is essential for rapid growth with -glucuronate as the primary source of carbon and energy. In contrast, an mutant grew more rapidly on -glucuronate than the parent. Transcription of is initiated at a σ–dependent promoter predicted . Purified ExuR bound to the regulatory region in the presence, but not in the absence, of -glucuronate. Apparently weaker UxuR binding in the presence of glucuronate was also detected, and its addition decreased ExuR binding by forming ExuR–UxuR heterodimers. Glucuronate induced transcription in the parental strain, but not in the mutant. No evidence was obtained for cAMP-dependent regulation of by the catabolite repressor protein (CRP). A previous study reported that the divergent and genes, essential for -galactonate metabolism, are repressed by UxuR. We showed that ExuR binds to the regulatory region, and that the binding is also glucuronate-dependent. As for the promoter, UxuR appeared to decrease ExuR binding. ExuR is required for glucuronate induction of and , and CRP is required for their transcription. The combined data established that UxuR and ExuR fulfil contrasting roles in regulating hexuronic acid metabolism and indicate that ExuR can function as a transcription activator, possibly by inactivating the repressor function of UxuR by heterodimer formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000297
2016-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/7/1220.html?itemId=/content/journal/micro/10.1099/mic.0.000297&mimeType=html&fmt=ahah

References

  1. Bates Utz C., Nguyen A. B., Smalley D. J., Anderson A. B., Conway T. 2004; GntP is the Escherichia coli fructuronic acid transporter and belongs to the UxuR regulon. J Bacteriol 186:7690–7696 [View Article][PubMed]
    [Google Scholar]
  2. Blattner F. R., Plunkett G., Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K. et al. 1997; The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462 [View Article][PubMed]
    [Google Scholar]
  3. Busby S., Kotlarz D., Buc H. 1983; Deletion mutagenesis of the Escherichia coli galactose operon promoter region. J Mol Biol 167:259–274[PubMed] [CrossRef]
    [Google Scholar]
  4. Casadaban M. J., Cohen S. N. 1980; Analysis of gene control signals by DNA fusion and cloning in Escherichia coli . J Mol Biol 138:179–207[PubMed] [CrossRef]
    [Google Scholar]
  5. Chang D. E., Smalley D. J., Tucker D. L., Leatham M. P., Norris W. E., Stevenson S. J., Anderson A. B., Grissom J. E., Laux D. C. et al. 2004; Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A 101:7427–7432 [View Article][PubMed]
    [Google Scholar]
  6. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  7. De Wulf P., McGuire A. M., Liu X., Lin E. C. 2002; Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli . J Biol Chem 277:26652–26661 [View Article][PubMed]
    [Google Scholar]
  8. Dornenburg J. E., Devita A. M., Palumbo M. J., Wade J. T. 2010; Widespread antisense transcription in Escherichia coli . MBio 1:e0002410 [View Article][PubMed]
    [Google Scholar]
  9. Fabich A. J., Jones S. A., Chowdhury F. Z., Cernosek A., Anderson A., Smalley D., McHargue J. W., Hightower G. A., Smith J. T. et al. 2008; Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 76:1143–1152 [View Article][PubMed]
    [Google Scholar]
  10. Favre-Bonte S., Joly B., Forestier C. 1999; Consequences of reduction of Klebsiella pneumoniae capsule expression on interactions of this bacterium with epithelial cells. Infect Immun 67:554–561[PubMed]
    [Google Scholar]
  11. Gama-Castro S., Jiménez-Jacinto V., Peralta-Gil M., Santos-Zavaleta A., Peñaloza-Spinola M. I., Contreras-Moreira B., Segura-Salazar J., Muñiz-Rascado L., Martínez-Flores I. et al. 2008; RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res 36:D120–124 [View Article][PubMed]
    [Google Scholar]
  12. Huerta A. M., Collado-Vides J. 2003; Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. J Mol Biol 333:261–278[PubMed] [CrossRef]
    [Google Scholar]
  13. Hugouvieux-Cotte-Pattat N., Robert-Baudouy J. 1981; Isolation of fusions between the lac genes and several genes of the exu regulon: analysis of their regulation, determination of the transcription direction of the uxaC-uxaA operon, in Escherichia coli K-12. Mol Gen Geneti 182:279–287 [CrossRef]
    [Google Scholar]
  14. Igarashi K., Ishihama A. 1991; Bipartite functional map of the E . coli RNA polymerase alpha subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell 65:1015–1022 [View Article][PubMed]
    [Google Scholar]
  15. Islam M. S., Shaw R. K., Frankel G., Pallen M. J., Busby S. J., Sh I. M. 2012; Translation of a minigene in the 5′ leader sequence of the enterohaemorrhagic Escherichia coli LEE1 transcription unit affects expression of the neighbouring downstream gene. Biochem J 441:247–253 [View Article][PubMed]
    [Google Scholar]
  16. Keseler I. M., Mackie A., Peralta-Gil M., Santos-Zavaleta A., Gama-Castro S., Bonavides-Martínez C., Fulcher C., Huerta A. M., Kothari A. et al. 2013; EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res 41:D605–612 [View Article][PubMed]
    [Google Scholar]
  17. Kolb A., Busby S., Buc H., Garges S., Adhya S. 1993; Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62:749–795 [View Article][PubMed]
    [Google Scholar]
  18. Mata-Gilsinger M., Ritzenthaler P. 1983; Physical mapping of the exuT and uxaC operators by use of exu plasmids and generation of deletion mutants in vitro . J Bacteriol 155:973–982[PubMed]
    [Google Scholar]
  19. Medina-Rivera A., Abreu-Goodger C., Thomas-Chollier M., Salgado H., Collado-Vides J., van Helden J. 2011; Theoretical and empirical quality assessment of transcription factor-binding motifs. Nucleic Acids Res 39:808–824 [View Article][PubMed]
    [Google Scholar]
  20. Nemoz G., Robert-Baudouy J., Stoeber F. 1976; Physiological and genetic regulation of the aldohexuronate transport system in Escherichia coli . J Bacteriol 127:706–718[PubMed]
    [Google Scholar]
  21. Ozoline O. N., Fujita N., Murakami K., Ishihama A. 1998; Monitoring of RNA polymerase-DNA UP element interaction by a fluorescent probe conjugated to α subunit. Eur J Biochem 253:371–381[PubMed] [CrossRef]
    [Google Scholar]
  22. Ozoline O. N., Fujita N., Ishihama A. 2001; Mode of DNA-protein interaction between the C-terminal domain of Escherichia coli RNA polymerase α subunit and T7D promoter UP element. Nucleic Acids Res 29:4909–4919 [View Article][PubMed]
    [Google Scholar]
  23. Peekhaus N., Conway T. 1998; What's for dinner?: Entner-Doudoroff metabolism in Escherichia coli . J Bacteriol 180:3495–3502[PubMed]
    [Google Scholar]
  24. Portalier R., Robert-Baudouy J., Stoeber F. 1980; Regulation of Escherichia coli K-12 hexuronate system genes: exu regulon. J Bacteriol 143:1095–1107[PubMed]
    [Google Scholar]
  25. Ritzenthaler P., Mata-Gilsinger M., Stoeber F. 1980; Construction and expression of hybrid plasmids containing Escherichia coli K-12 uxu genes. J Bacteriol 143:1116–1126[PubMed]
    [Google Scholar]
  26. Ritzenthaler P., Mata-Gilsinger M. 1982; Use of in vitro gene fusions to study the uxuR regulatory gene in Escherichia coli K-12: direction of transcription and regulation of its expression. J Bacteriol 150:1040–1047[PubMed]
    [Google Scholar]
  27. Ritzenthaler P., Blanco C., Mata-Gilsinger M. 1983; Interchangeability of repressors for the control of the uxu and uid operons in E. coli K12 . Mol Gen Genet 191:263–270[PubMed] [CrossRef]
    [Google Scholar]
  28. Robert-Baudouy J., Portalier R., Stoeber F. 1981; Regulation of hexuronate system genes in Escherichia coli K-12: multiple regulation of the uxu operon by exuR and uxuR gene products. J Bacteriol 145:211–220[PubMed]
    [Google Scholar]
  29. Rodionov D. A., Mironov A. A., Rakhmaninova A. B., Gelfand M. S. 2000; Transcriptional regulation of transport and utilization systems of hexuronides, hexuronates and hexonates in gamma purple bacteria. Mol Microbiol 38:673–683[PubMed] [CrossRef]
    [Google Scholar]
  30. Shavkunov K. S., Masulis I. S., Tutukina M. N., Deev A. A., Ozoline O. N. 2009; Gains and unexpected lessons from genome-scale promoter mapping. Nucleic Acids Res 37:4919–4931 [View Article][PubMed]
    [Google Scholar]
  31. Shimada T., Kori A., Ishihama A. 2013; Involvement of the ribose operon repressor RbsR in regulation of purine nucleotide synthesis in Escherichia coli . FEMS Microbiol Lett 344:159–165 [View Article][PubMed]
    [Google Scholar]
  32. Shulami S., Gat O., Sonenshein A. L., Shoham Y., Yu S. 1999; The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6. J Bacteriol 181:3695–3704[PubMed]
    [Google Scholar]
  33. Studier F. W. 1991; Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219:37–44 [View Article][PubMed]
    [Google Scholar]
  34. Suvorova I. A., Tutukina M. N., Ravcheev D. A., Rodionov D. A., Ozoline O. N., Gelfand M. S. 2011; Comparative genomic analysis of the hexuronate metabolism genes and their regulation in gammaproteobacteria. J Bacteriol 193:3956–3963 [View Article][PubMed]
    [Google Scholar]
  35. Sweeney N. J., Laux D. C., Cohen P. S. 1996; Escherichia coli F-18 and E . coli K-12 eda mutants do not colonize the streptomycin-treated mouse large intestine. Infect Immun 64:3504–3511[PubMed]
    [Google Scholar]
  36. Tan K., Moreno-Hagelsieb G., Collado-Vides J., Stormo G. D. 2001; A comparative genomics approach to prediction of new members of regulons. Genome Res 11:566–584 [View Article][PubMed]
    [Google Scholar]
  37. Tutukina M. N., Shavkunov K. S., Masulis I. S., Ozoline O. N. 2010; Antisense transcription within the hns locus of Escherichia coli . Mol Biol 44:439–447 [CrossRef]
    [Google Scholar]
  38. Tutukina M. N., Potapova A. V., Vlasov P. K., Purtov Y. A., Ozoline O. N. 2016; Structural modeling of the ExuR and UxuR transcription factors of E . coli: search for the ligands affecting their regulatory properties. J Biomol Struct Dyn [View Article][PubMed]
    [Google Scholar]
  39. Vine C. E., Purewal S. K., Cole J. A. 2011; NsrR-dependent method for detecting nitric oxide accumulation in the Escherichia coli cytoplasm and enzymes involved in NO production. FEMS Microbiol Lett 325:108–114 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000297
Loading
/content/journal/micro/10.1099/mic.0.000297
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed