1887

Abstract

The GlgE pathway is thought to be responsible for the conversion of trehalose into a glycogen-like -glucan polymer in bacteria. Trehalose is first converted to maltose, which is phosphorylated by maltose kinase Pep2 to give -maltose 1-phosphate. This is the donor substrate of the maltosyl transferase GlgE that is known to extend -1,4-linked maltooligosaccharides, which are thought to be branched with -1,6 linkages. The genome of contains all the genes coding for the GlgE pathway enzymes but none of those of related pathways, including and of the glycogen pathway. This provides an opportunity to study the GlgE pathway in isolation. The genes of the GlgE pathway were upregulated at the onset of sporulation, consistent with the known timing of -glucan deposition. A constructed Δ null mutant strain was viable but showed a delayed developmental phenotype when grown on maltose, giving less cell mass and delayed sporulation. Pre-spore cells and spores of the mutant were frequently double the length of those of the wild-type, implying impaired cross-wall formation, and spores showed reduced tolerance to stress. The mutant accumulated -maltose 1-phosphate and maltose but no -glucan. Therefore, the GlgE pathway is necessary and sufficient for polymer biosynthesis. Growth of the Δ mutant on galactose and that of a Δ mutant on maltose were analysed. In both cases, neither accumulation of -maltose 1-phosphate/-glucan nor a developmental delay was observed. Thus, high levels of -maltose 1-phosphate are responsible for the developmental phenotype of the Δ mutant, rather than the lack of -glucan.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000296
2016-07-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/7/1208.html?itemId=/content/journal/micro/10.1099/mic.0.000296&mimeType=html&fmt=ahah

References

  1. Antoine A. D., Tepper B. S.. 1969; Environmental control of glycogen and lipid content of Mycobacterium tuberculosis. J Bacteriol100:538–539[PubMed]
    [Google Scholar]
  2. Asención Diez M. D., Demonte A. M., Syson K., Arias D. G., Gorelik A., Guerrero S. A., Bornemann S., Iglesias A. A.. 2015; Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. BBA-Gen Subjects1850:13–21[CrossRef]
    [Google Scholar]
  3. Baba O.. 1993; Production of monoclonal antibody that recognizes glycogen and its application for immunohistochemistry. Kokubyo Gakkai Zasshi60:264–287 [CrossRef][PubMed]
    [Google Scholar]
  4. Belanger A. E., Hatfull G. F.. 1999; Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis. J Bacteriol181:6670 –6678[PubMed]
    [Google Scholar]
  5. Beringer J. E., Johnston A. W. B., Wells B.. 1977; Isolation of conditional ineffective mutants of Rhizobium leguminosarum. J Gen Microbiol98:339–343[CrossRef]
    [Google Scholar]
  6. Bibb M. J., Domonkos A., Chandra G., Buttner M. J.. 2012; Expression of the chaplin and rodlin hydrophobic sheath proteins in Streptomyces venezuelae is controlled by σ(BldN) and a cognate anti-sigma factor, RsbN. Mol Microbiol84:1033–1049 [CrossRef][PubMed]
    [Google Scholar]
  7. Bittencourt V. C. B., Figueiredo R. T., da Silva R. B., Mourão-Sá D. S., Fernandez P. L., Sassaki G. L., Mulloy B., Bozza M. T., Barreto-Bergter E.. 2006; An alpha-glucan of Pseudallescheria boydii is involved in fungal phagocytosis and Toll-like receptor activation. J Biol Chem281:22614 –22623 [CrossRef][PubMed]
    [Google Scholar]
  8. Bornemann S.. 2016; α-Glucan biosynthesis and the GlgE pathway in Mycobacterium tuberculosis. Biochem Soc Trans44:68–73 [CrossRef][PubMed]
    [Google Scholar]
  9. Bratbak G., Dundas I.. 1984; Bacterial dry matter content and biomass estimations. Appl Environ Microbiol48:755–757[PubMed]
    [Google Scholar]
  10. Braña A. F., Manzanal M. B., Hardisson C.. 1982; Characterization of intracellular polysaccharides of Streptomyces. Can J Microbiol28:1320–1323[PubMed][CrossRef]
    [Google Scholar]
  11. Braña A. F., Méndez C., Díaz L. A., Manzanal M. B., Hardisson C.. 1986; Glycogen and trehalose accumulation during colony development in Streptomyces antibioticus. J Gen Microbiol132:1319–1326 [CrossRef][PubMed]
    [Google Scholar]
  12. Bruton C. J., Plaskitt K. A., Chater K. F.. 1995; Tissue-specific glycogen branching isoenzymes in a multicellular prokaryote, Streptomyces coelicolor A3(2). Mol Microbiol18:89–99[PubMed][CrossRef]
    [Google Scholar]
  13. Bush M. J., Bibb M. J., Chandra G., Findlay K. C., Buttner M. J.. 2013; Genes required for aerial growth, cell division, and chromosome segregation are targets of WhiA before sporulation in Streptomyces venezuelae. MBio4:e00684-13 [CrossRef][PubMed]
    [Google Scholar]
  14. Bush M. J., Tschowri N., Schlimpert S., Flärdh K., Buttner M. J.. 2015; c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nat Rev Microbiol13:749–760 [CrossRef][PubMed]
    [Google Scholar]
  15. Chandra G., Chater K. F., Bornemann S.. 2011; Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology157:1565–1572 [CrossRef][PubMed]
    [Google Scholar]
  16. Cywes C., Hoppe H. C., Daffé M., Ehlers M. R.. 1997; Nonopsonic binding of Mycobacterium tuberculosis to complement receptor type 3 is mediated by capsular polysaccharides and is strain dependent. Infect Immun65:4258–4266[PubMed]
    [Google Scholar]
  17. Datsenko K. A., Wanner B. L.. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  18. Dinadayala P., Lemassu A., Granovski P., Cérantola S., Winter N., Daffé M.. 2004; Revisiting the structure of the anti-neoplastic glucans of Mycobacterium bovis Bacille Calmette-Guerin. Structural analysis of the extracellular and boiling water extract-derived glucans of the vaccine substrains. J Biol Chem279:12369–12378 [CrossRef][PubMed]
    [Google Scholar]
  19. Drepper A., Peitzmann R., Pape H.. 1996; Maltokinase (ATP:maltose 1-phosphotransferase) from Actinoplanes sp.: demonstration of enzyme activity and characterization of the reaction product. FEBS Lett388:177–179 [CrossRef][PubMed]
    [Google Scholar]
  20. Elbein A. D.. 1967; Carbohydrate metabolism in streptomycetes. II. Isolation and enzymatic synthesis of trehalose. J Bacteriol94:1520–1524[PubMed]
    [Google Scholar]
  21. Elbein A. D., Pastuszak I., Tackett A. J., Wilson T., Pan Y. T.. 2010; Last step in the conversion of trehalose to glycogen: a mycobacterial enzyme that transfers maltose from maltose 1-phosphate to glycogen. J Biol Chem285:9803–9812 [CrossRef][PubMed]
    [Google Scholar]
  22. Flärdh K., Buttner M. J.. 2009; Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol7:36–49 [CrossRef][PubMed]
    [Google Scholar]
  23. Gagliardi M. C., Lemassu A., Teloni R., Mariotti S., Sargentini V., Pardini M., Daffé M., Nisini R.. 2007; Cell wall-associated alpha-glucan is instrumental for Mycobacterium tuberculosis to block CD1 molecule expression and disable the function of dendritic cell derived from infected monocyte. Cell Microbiol9:2081–2092 [CrossRef][PubMed]
    [Google Scholar]
  24. Garg S. K., Alam M. S., Kishan K. V. R., Agrawal P.. 2007; Expression and characterization of alpha-(1,4)-glucan branching enzyme Rv1326c of Mycobacterium tuberculosis H37Rv. Protein Expr Purif51:198–208 [CrossRef][PubMed]
    [Google Scholar]
  25. Geurtsen J., Chedammi S., Mesters J., Cot M., Driessen N. N., Sambou T., Kakutani R., Ummels R., Maaskant J. et al. 2009; Identification of mycobacterial alpha-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation. J Immunol183:5221–5231 [CrossRef][PubMed]
    [Google Scholar]
  26. Gordon G. B., Miller L. R., Bensch K. G.. 1963; Fixation of tissue culture cells for ultrastructural cytochemistry. Exp Cell Res31:440–443[PubMed][CrossRef]
    [Google Scholar]
  27. Gregory M. A., Till R., Smith M. C.. 2003; Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors. J Bacteriol185:5320–5323[PubMed][CrossRef]
    [Google Scholar]
  28. Gust B., Challis G. L., Fowler K., Kieser T., Chater K. F.. 2003; PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A100:1541–1546 [CrossRef][PubMed]
    [Google Scholar]
  29. Gust B., Chandra G., Jakimowicz D., Yuqing T., Bruton C. J., Chater K. F., Tian Y. Q.. 2004; Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv Appl Microbiol54:107–128 [CrossRef][PubMed]
    [Google Scholar]
  30. Hey A. E., Elbein A. D.. 1968; Partial prufication and properties of a trehalase from Streptomyces hygroscopicus. J Bacteriol96:105–110[PubMed]
    [Google Scholar]
  31. Jarling M., Cauvet T., Grundmeier M., Kuhnert K., Pape H.. 2004; Isolation of mak1 from Actinoplanes missouriensis and evidence that Pep2 from Streptomyces coelicolor is a maltokinase. J Basic Microbiol44:360–373 [CrossRef][PubMed]
    [Google Scholar]
  32. Kalscheuer R., Jacobs W. R.. 2010; The significance of GlgE as a new target for tuberculosis. Drug News & Perspectives 23:619–624 [CrossRef][PubMed]
    [Google Scholar]
  33. Kalscheuer R., Syson K., Veeraraghavan U., Weinrick B., Biermann K. E., Liu Z., Sacchettini J. C., Besra G., Bornemann S. et al. 2010; Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an alpha-glucan pathway. Nat Chem Biol6:376 –384 [CrossRef][PubMed]
    [Google Scholar]
  34. Kaur D., Pham H., Larrouy-Maumus G., Rivière M., Vissa V., Guerin M. E., Puzo G., Brennan P. J., Jackson M.. 2009; Initiation of methylglucose lipopolysaccharide biosynthesis in mycobacteria. PLoS One4:e5447 [CrossRef][PubMed]
    [Google Scholar]
  35. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. 2000; Practical Streptomyces Genetics Norwich, UK: The John Innes Foundation;
    [Google Scholar]
  36. Leiba J., Syson K., Baronian G., Zanella-Cleon I., Kalscheuer R., Kremer L., Bornemann S., Molle V.. 2013; Mycobacterium tuberculosis maltosyltransferase GlgE, a genetically validated anti-tuberculosis target, is negatively regulated by Ser/Thr phosphorylation J Biol Chem. 28816546–16556
  37. Lemassu A., Daffé M.. 1994; Structural features of the exocellular polysaccharides of Mycobacterium tuberculosis. Biochem J297:351–357[PubMed][CrossRef]
    [Google Scholar]
  38. Martín M., Díaz L. A., Manzanal M. B., Hardisson C.. 1986; Role of trehalose in the spores of Streptomyces. FEMS Microbiol Lett35:49–54 [CrossRef]
    [Google Scholar]
  39. McBride M. J., Ensign J. C.. 1990; Regulation of trehalose metabolism by Streptomyces griseus spores. J Bacteriol172:3637–3643[PubMed][CrossRef]
    [Google Scholar]
  40. Miah F., Koliwer-Brandl H., Rejzek M., Field R. A., Kalscheuer R., Bornemann S.. 2013; Flux through trehalose synthase flows from trehalose to the alpha anomer of maltose in mycobacteria. Chem & Biol 20:487–492[CrossRef]
    [Google Scholar]
  41. Niehues B., Jossek R., Kramer U., Koch A., Jarling M., Schröder W., Pape H.. 2003; Isolation and characterization of maltokinase (ATP:maltose 1-phosphotransferase) from Actinoplanes missouriensis. Arch Microbiol180:233–239 [CrossRef][PubMed]
    [Google Scholar]
  42. Ortalo-Magné A., Dupont M. A., Lemassu A., Andersen A. B., Gounon P., Daffé M.. 1995; Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology141:1609–1620 [CrossRef][PubMed]
    [Google Scholar]
  43. Paget M. S., Chamberlin L., Atrih A., Foster S. J., Buttner M. J.. 1999; Evidence that the extracytoplasmic function sigma factor σE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol181:204–211[PubMed]
    [Google Scholar]
  44. Pan Y. T., Koroth Edavana V., Jourdian W. J., Edmondson R., Carroll J. D., Pastuszak I., Elbein A. D.. 2004; Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression, and properties of the enzyme. Eur J Biochem271:4259–4269 [CrossRef][PubMed]
    [Google Scholar]
  45. Plaskitt K. A., Chater K. F.. 1995; Influences of developmental genes on localized glycogen deposition in colonies of a mycelial prokaryote, Streptomyces coelicolor A3(2) - a possible interface between metabolism and mophogenesis. Phil Trans R Soc B347:105–121[CrossRef]
    [Google Scholar]
  46. Preiss J.. 2009; Glycogen biosynthesis. In The Encyclopedia of Microbiologyvol. 5 pp.145–158 Edited by Schaechter M.. Oxford, UK: Elsevier;[CrossRef]
    [Google Scholar]
  47. Ranade N., Vining L. C.. 1993; Accumulation of intracellular carbon reserves in relation to chloramphenicol biosynthesis by Streptomyces venezuelae. Can J Microbiol39:377–383[PubMed][CrossRef]
    [Google Scholar]
  48. Robertson J. G., Lyttleton P., Williamson K. I., Batt R. D.. 1975; The effect of fixation procedures on the electron density of polysaccharide granules in Nocardia corallina. J Ultrastruct Res52:321–332 [CrossRef][PubMed]
    [Google Scholar]
  49. Sambou T., Dinadayala P., Stadthagen G., Barilone N., Bordat Y., Constant P., Levillain F., Neyrolles O., Gicquel B. et al. 2008; Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice. Mol Microbiol70:762–774 [CrossRef][PubMed]
    [Google Scholar]
  50. Schneider D., Bruton C. J., Chater K. F.. 2000; Duplicated gene clusters suggest an interplay of glycogen and trehalose metabolism during sequential stages of aerial mycelium development in Streptomyces coelicolor A3(2). Mol Gen Genet263:543–553[PubMed][CrossRef]
    [Google Scholar]
  51. Schwebach J. R., Glatman-Freedman A., Gunther-Cummins L., Dai Z. D., Robbins J. B., Schneerson R., Casadevall A.. 2002; Glucan is a component of the Mycobacterium tuberculosis surface that is expressed in vitro and in vivo. Infect Immun70:2566–2575[PubMed][CrossRef]
    [Google Scholar]
  52. Stadthagen G., Sambou T., Guerin M., Barilone N., Boudou F., Korduláková J., Charles P., Alzari P. M., Lemassu A. et al. 2007; Genetic basis for the biosynthesis of methylglucose lipopolysaccharides in Mycobacterium tuberculosis. J Biol Chem282:27270–27276 [CrossRef][PubMed]
    [Google Scholar]
  53. Syson K., Stevenson C. E., Rejzek M., Fairhurst S. A., Nair A., Bruton C. J., Field R. A., Chater K. F., Lawson D. M. et al. 2011; Structure of Streptomyces maltosyltransferase GlgE, a homologue of a genetically validated anti-tuberculosis target. J Biol Chem286:38298–38310 [CrossRef][PubMed]
    [Google Scholar]
  54. Thiéry J. P.. 1967; Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J Microscopie6:987–1018
    [Google Scholar]
  55. Tzanis A., Dalton K. A., Hesketh A., den Hengst C. D., Buttner M. J., Thibessard A., Kelemen G. H.. 2014; A sporulation-specific, sigF-dependent protein, SspA, affects septum positioning in Streptomyces coelicolor. Mol Microbiol91:363–380 [CrossRef][PubMed]
    [Google Scholar]
  56. van de Weerd R., Berbís M. A., Sparrius M., Maaskant J. J., Boot M., Paauw N. J., de Vries N., Boon L., Baba O. et al. 2015; A murine monoclonal antibody to glycogen: characterization of epitope-fine specificity by saturation transfer difference (STD) NMR spectroscopy and its use in mycobacterial capsular α-glucan research. ChemBioChem16:977–989 [CrossRef][PubMed]
    [Google Scholar]
  57. Yeo M., Chater K.. 2005; The interplay of glycogen metabolism and differentiation provides an insight into the developmental biology of Streptomyces coelicolor. Microbiology151:855–861 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000296
Loading
/content/journal/micro/10.1099/mic.0.000296
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error