2-Deoxy-glucose is a potent inhibitor of biofilm growth in Free

Abstract

strain 15 (ATCC 9723), which forms robust biofilms, was grown under optimal biofilm conditions in NaCl-free Luria-Bertani broth (LB*) or in LB* supplemented with one of the non-metabolizable analogues 2-deoxy-glucose (2DG), methyl α-mannopyranoside (αMM), or methyl α-glucopyranoside (αMG). Biofilm growth was inhibited by mannose analogue 2DG even at very low concentration in unbuffered medium, and the maximal inhibition was enhanced in the presence of either 100 mM KPO or 100 mM MOPS, pH 7.5; in buffered medium, concentrations of 0.02 % (1.2 mM) or more inhibited growth nearly completely. In contrast, mannose analogue αMM, which should not be able to enter the cells but has been reported to inhibit biofilm growth by binding to FimH, did not exhibit strong inhibition even at concentrations up to 1.8 % (108 mM). The glucose analogue αMG inhibited biofilm growth, but much less strongly than did 2DG. None of the analogues inhibited planktonic growth or caused a change in pH of the unbuffered medium. Similar inhibitory effects of the analogues were observed in minimal medium. The effects were not strain-specific, as 2DG and αMG also inhibited the weak biofilm growth of K12.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000290
2016-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/6/1037.html?itemId=/content/journal/micro/10.1099/mic.0.000290&mimeType=html&fmt=ahah

References

  1. Adler J., Epstein W. 1974; Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proc Natl Acad Sci U S A 71:2895–2899[PubMed] [CrossRef]
    [Google Scholar]
  2. Balasubramanian D., Vanderpool C. K. 2013; Deciphering the interplay between two independent functions of the small RNA regulator SgrS in Salmonella . J Bacteriol 195:4620–4630 [View Article][PubMed]
    [Google Scholar]
  3. Barnhart M. M., Lynem J., Chapman M. R. 2006; GlcNAc-6P levels modulate the expression of Curli fibers by Escherichia coli . J Bacteriol 188:5212–5219 [View Article][PubMed]
    [Google Scholar]
  4. Bouckaert J., Berglund J., Schembri M., De Genst E., Cools L., Wuhrer M., Hung C. S., Pinkner J., Slättegård R. et al. 2005; Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Mol Microbiol 55:441–455 [View Article][PubMed]
    [Google Scholar]
  5. Deutscher J., Francke C., Postma P. W. 2006; How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031 [View Article][PubMed]
    [Google Scholar]
  6. Hogema B. M., Arents J. C., Bader R., Eijkemans K., Yoshida H., Takahashi H., Aiba H., Postma P. W. 1998; Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of Enzyme IIAGlc . Mol Microbiol 30:487–498 [View Article][PubMed]
    [Google Scholar]
  7. Hung C. S., Bouckaert J., Hung D., Pinkner J., Widberg C., DeFusco A., Auguste C. G., Strouse R., Langermann S. et al. 2002; Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol 44:903–915[PubMed] [CrossRef]
    [Google Scholar]
  8. Lebeaux D., Ghigo J. M., Beloin C. 2014; Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78:510–543 [View Article][PubMed]
    [Google Scholar]
  9. Leung H. J., Duran E. M., Kurtoglu M., Andreansky S., Lampidis T. J., Mesri E. A. 2012; Activation of the unfolded protein response by 2-deoxy-D-glucose inhibits Kaposi's sarcoma-associated herpesvirus replication and gene expression. Antimicrob Agents Chemother 56:5794–5803 [View Article][PubMed]
    [Google Scholar]
  10. Papenfort K., Sun Y., Miyakoshi M., Vanderpool C. K., Vogel J. 2013; Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 153:426–437 [View Article][PubMed]
    [Google Scholar]
  11. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594[PubMed]
    [Google Scholar]
  12. Pratt L. A., Kolter R. 1998; Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293[PubMed] [CrossRef]
    [Google Scholar]
  13. Rephaeli A. W., Saier M. H. 1978; Kinetic analyses of the sugar phosphate:sugar transphosphorylation reaction catalyzed by the glucose enzyme II complex of the bacterial phosphotransferase system. J Biol Chem 253:7595–7597[PubMed]
    [Google Scholar]
  14. Reshamwala S. M., Noronha S. B. 2011; Biofilm formation in Escherichia coli cra mutants is impaired due to down-regulation of curli biosynthesis. Arch Microbiol 193:711–722 [View Article][PubMed]
    [Google Scholar]
  15. Rice J. B., Vanderpool C. K. 2011; The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes. Nucleic Acids Res 39:3806–3819 [View Article][PubMed]
    [Google Scholar]
  16. Richards G. R., Patel M. V., Lloyd C. R., Vanderpool C. K. 2013; Depletion of glycolytic intermediates plays a key role in glucose-phosphate stress in Escherichia coli . J Bacteriol 195:4816–4825 [View Article][PubMed]
    [Google Scholar]
  17. Römling U., Sierralta W. D., Eriksson K., Normark S. 1998; Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28:249–264[PubMed] [CrossRef]
    [Google Scholar]
  18. Römling U., Rohde M. 1999; Flagella modulate the multicellular behavior of Salmonella typhimurium on the community level. FEMS Microbiol Lett 180:91–102 [View Article][PubMed]
    [Google Scholar]
  19. Römling U., Rohde M., Olsén A., Normark S., Reinköster J. 2000; AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36:10–23[PubMed] [CrossRef]
    [Google Scholar]
  20. Saier M. H., Bromberg F. G., Roseman S. 1973; Characterization of constitutive galactose permease mutants in Salmonella typhimurium . J Bacteriol 113:512–514[PubMed]
    [Google Scholar]
  21. Stock J. B., Waygood E. B., Meadow N. D., Postma P. W., Roseman S. 1982; Sugar transport by the bacterial phos photransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. J Biol Chem 257:14543–14552[PubMed]
    [Google Scholar]
  22. Sun Y., Vanderpool C. K. 2011; Regulation and function of Escherichia coli sugar efflux transporter A (SetA) during glucose-phosphate stress. J Bacteriol 193:143–153 [View Article][PubMed]
    [Google Scholar]
  23. Sun Y., Vanderpool C. K. 2013; Physiological consequences of multiple-target regulation by the small RNA SgrS in Escherichia coli . J Bacteriol 195:4804–4815 [View Article][PubMed]
    [Google Scholar]
  24. Sutrina S. L., Inniss P. I., Lazarus L. A., Inglis L., Maximilien J. 2007; Replacing the general energy-coupling proteins of the PEP: sugar phosphotransferase system of Salmonella typhimurium with fructose-inducible counterparts results in the inability to utilize non-PTS sugars. Can J Microbiol 53:586–598 [View Article][PubMed]
    [Google Scholar]
  25. Sutrina S. L., Daniel K., Lewis M., Charles N. T., Anselm C. K., Thomas N., Holder N. 2015; Biofilm growth of Escherichia coli is subject to cAMP-dependent and cAMP-independent inhibition. J Mol Microbiol Biotechnol 25:209–225 [View Article][PubMed]
    [Google Scholar]
  26. Vanderpool C. K., Gottesman S. 2004; Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol Microbiol 54:1076–1089 [View Article][PubMed]
    [Google Scholar]
  27. Wadler C. S., Vanderpool C. K. 2007; A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proc Natl Acad Sci U S A 104:20454–20459 [View Article][PubMed]
    [Google Scholar]
  28. Zhang X. D., Deslandes E., Villedieu M., Poulain L., Duval M., Gauduchon P., Schwartz L., Icard P. 2006; Effect of 2-deoxy-D-glucose on various malignant cell lines in vitro. Anticancer Res 26:3561–3566[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000290
Loading
/content/journal/micro/10.1099/mic.0.000290
Loading

Data & Media loading...

Most cited Most Cited RSS feed