1887

Abstract

Adherent–invasive (AIEC) have been implicated in the aetiology of Crohn’s disease (CD), a chronic inflammatory bowel condition. It has been proposed that AIEC-infected macrophages produce high levels of pro-inflammatory cytokines thus contributing to the inflammation observed in CD. AIEC can replicate in macrophages and we wanted to determine if bacterial replication was linked to the high level of cytokine production associated with AIEC-infected macrophages. Therefore, we undertook a genetic analysis of the metabolic requirements for AIEC replication in the macrophage and we show that AIEC replication in this niche is dependent on bacterial glycolysis. In addition, our analyses indicate that AIEC have access to a wide range of nutrients in the macrophage, although the levels of purines and pyrimidines do appear to be limiting. Finally, we show that the macrophage response to AIEC infection is indistinguishable from the response to the non-replicating glycolysis mutant (Δ) and a non-pathogenic strain of , MG1655. Therefore, AIEC does not appear to subvert the normal macrophage response to during infection.

Keyword(s): AIEC , glycolysis and macrophage
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000289
2016-06-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/6/954.html?itemId=/content/journal/micro/10.1099/mic.0.000289&mimeType=html&fmt=ahah

References

  1. Alteri C. J., Smith S. N., Mobley H. L.. 2009; Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog5:e1000448 [CrossRef][PubMed]
    [Google Scholar]
  2. Arpaia N., Godec J., Lau L., Sivick K. E., McLaughlin L. M., Jones M. B., Dracheva T., Peterson S. N., Monack D. M., Barton G. M.. 2011; TLR signaling is required for Salmonella typhimurium virulence. Cell144:675–688 [CrossRef][PubMed]
    [Google Scholar]
  3. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.. 2006; Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol2:2006–2008 [CrossRef][PubMed]
    [Google Scholar]
  4. Barnich N., Boudeau J., Claret L., Darfeuille-Michaud A.. 2003; Regulatory and functional co-operation of flagella and type 1 pili in adhesive and invasive abilities of AIEC strain LF82 isolated from a patient with Crohn's disease. Mol Microbiol48:781–794 [CrossRef][PubMed]
    [Google Scholar]
  5. Beare P. A., Gilk S. D., Larson C. L., Hill J., Stead C. M., Omsland A., Cockrell D. C., Howe D., Voth D. E., Heinzen R. A.. 2011; Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages. MBio2:e00175-11 [CrossRef][PubMed]
    [Google Scholar]
  6. Benjamini Y., Hochberg Y.. 1995; Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B57:289–300
    [Google Scholar]
  7. Boudeau J., Glasser A. L., Masseret E., Joly B., Darfeuille-Michaud A.. 1999; Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease. Infect Immun67:4499–4509[PubMed]
    [Google Scholar]
  8. Boudeau J., Barnich N., Darfeuille-Michaud A.. 2001; Type 1 pili-mediated adherence of Escherichia coli strain LF82 isolated from Crohn's disease is involved in bacterial invasion of intestinal epithelial cells. Mol Microbiol39:1272–1284 [CrossRef][PubMed]
    [Google Scholar]
  9. Bowden S. D., Rowley G., Hinton J. C., Thompson A.. 2009; Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar Typhimurium. Infect Immun77:3117–3126 [CrossRef][PubMed]
    [Google Scholar]
  10. Bowden S. D., Ramachandran V. K., Knudsen G. M., Hinton J. C., Thompson A.. 2010; An incomplete TCA cycle increases survival of Salmonella Typhimurium during infection of resting and activated murine macrophages. PLoS One5:e13871 [CrossRef][PubMed]
    [Google Scholar]
  11. Bringer M. A., Barnich N., Glasser A. L., Bardot O., Darfeuille-Michaud A.. 2005; HtrA stress protein is involved in intramacrophagic replication of adherent and invasive Escherichia coli strain LF82 isolated from a patient with Crohn's disease. Infect Immun73:712–721 [CrossRef][PubMed]
    [Google Scholar]
  12. Bringer M. A., Glasser A. L., Tung C. H., Méresse S., Darfeuille-Michaud A.. 2006; The Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 replicates in mature phagolysosomes within J774 macrophages. Cell Microbiol8:471–484 [CrossRef][PubMed]
    [Google Scholar]
  13. Bringer M. A., Rolhion N., Glasser A. L., Darfeuille-Michaud A.. 2007; The oxidoreductase DsbA plays a key role in the ability of the Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 to resist macrophage killing. J Bacteriol189:4860–4871 [CrossRef][PubMed]
    [Google Scholar]
  14. Bringer M. A., Billard E., Glasser A. L., Colombel J. F., Darfeuille-Michaud A.. 2012; Replication of Crohn's disease-associated AIEC within macrophages is dependent on TNF-α secretion. Lab Invest92:411–419 [CrossRef][PubMed]
    [Google Scholar]
  15. Buendía-Clavería A. M., Moussaid A., Ollero F. J., Vinardell J. M., Torres A., Moreno J., Gil-Serrano A. M., Rodríguez-Carvajal M. A., Tejero-Mateo P. et al. 2003; A purL mutant of Sinorhizobium fredii HH103 is symbiotically defective and altered in its lipopolysaccharide. Microbiology149:1807–1818 [CrossRef][PubMed]
    [Google Scholar]
  16. Caldara M., Dupont G., Leroy F., Goldbeter A., De Vuyst L., Cunin R.. 2008; Arginine biosynthesis in Escherichia coli: experimental perturbation and mathematical modeling. J Biol Chem283:6347–6358 [CrossRef][PubMed]
    [Google Scholar]
  17. Cano V., March C., Insua J. L., Aguiló N., Llobet E., Moranta D., Regueiro V., Brennan G. P., Millán-Lou M. I. et al. 2015; Klebsiella pneumoniae survives within macrophages by avoiding delivery to lysosomes. Cell Microbiol17:1537–1560 [CrossRef][PubMed]
    [Google Scholar]
  18. Chang D. E., Smalley D. J., Tucker D. L., Leatham M. P., Norris W. E., Stevenson S. J., Anderson A. B., Grissom J. E., Laux D. C. et al. 2004; Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A101:7427–7432 [CrossRef][PubMed]
    [Google Scholar]
  19. Cho B. K., Federowicz S. A., Embree M., Park Y. S., Kim D., Palsson B. Ø.. 2011; The PurR regulon in Escherichia coli K-12 MG1655. Nucleic Acids Res39:6456–6464 [CrossRef][PubMed]
    [Google Scholar]
  20. Choi K.-H., Gaynor J. B., White K. G., Lopez C., Bosio C. M., Karkhoff-Schweizer R. R., Schweizer H. P.. 2005; A Tn7-based broad-range bacterial cloning and expression system. Nat Methods2:443–448[CrossRef]
    [Google Scholar]
  21. Clarke D. J., Chaudhuri R. R., Martin H. M., Campbell B. J., Rhodes J. M., Constantinidou C., Pallen M. J., Loman N. J., Cunningham A. F. et al. 2011; Complete genome sequence of the Crohn's disease-associated adherent-invasive Escherichia coli strain HM605. J Bacteriol193:4540 [CrossRef][PubMed]
    [Google Scholar]
  22. Conte M. P., Longhi C., Marazzato M., Conte A. L., Aleandri M., Lepanto M. S., Zagaglia C., Nicoletti M., Aloi M. et al. 2014; Adherent-invasive Escherichia coli (AIEC) in pediatric Crohn's disease patients: phenotypic and genetic pathogenic features. BMC Res Notes7:748 [CrossRef][PubMed]
    [Google Scholar]
  23. Conway T., Cohen P. S.. 2015; Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol Spectr3:343–362 [CrossRef]
    [Google Scholar]
  24. Creek D. J., Jankevics A., Breitling R., Watson D. G., Barrett M. P., Burgess K. E.. 2011; Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: improved metabolite identification by retention time prediction. Anal Chem83:8703–8710 [CrossRef][PubMed]
    [Google Scholar]
  25. Creek D. J., Jankevics A., Burgess K. E., Breitling R., Barrett M. P.. 2012; IDEOM: An Excel interface for analysis of LC-MS-based metabolomics data. Bioinformatics28:1048–1049 [CrossRef][PubMed]
    [Google Scholar]
  26. Darfeuille-Michaud A., Boudeau J., Bulois P., Neut C., Glasser A. L., Barnich N., Bringer M. A., Swidsinski A., Beaugerie L., Colombel J.-F.. 2004; High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology127:412–421 [CrossRef][PubMed]
    [Google Scholar]
  27. de Souza H. L., de Carvalho V. R., Romeiro F. G., Sassaki L. Y., Keller R., Rodrigues J.. 2012; Mucosa-associated but not luminal Escherichia coli is augmented in Crohn's disease and ulcerative colitis. Gut Pathog4:24 [CrossRef][PubMed]
    [Google Scholar]
  28. Eisenreich W., Dandekar T., Heesemann J., Goebel W.. 2010; Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol8:401–412 [CrossRef][PubMed]
    [Google Scholar]
  29. Elliott T. R., Rayment N. B., Hudspith B. N., Hands R. E., Taylor K., Parkes G. C., Prescott N. J., Petrovska L., Hermon-Taylor J. et al. 2015; Lamina propria macrophage phenotypes in relation to Escherichia coli in Crohn's disease. BMC Gastroenterol15:75 [CrossRef][PubMed]
    [Google Scholar]
  30. Eriksson S., Lucchini S., Thompson A., Rhen M., Hinton J. C.. 2003; Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica . Mol Microbiol47:103–118 [CrossRef][PubMed]
    [Google Scholar]
  31. Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y. et al. 2004; Bioconductor: open software development for computational biology and bioinformatics. Genome Biol5:R80 [CrossRef][PubMed]
    [Google Scholar]
  32. Glasser A. L., Boudeau J., Barnich N., Perruchot M. H., Colombel J. F., Darfeuille-Michaud A.. 2001; Adherent invasive Escherichia coli strains from patients with Crohn's disease survive and replicate within macrophages without inducing host cell death. Infect Immun69:5529–5537 [CrossRef][PubMed]
    [Google Scholar]
  33. Götz A., Eylert E., Eisenreich W., Goebel W.. 2010; Carbon metabolism of enterobacterial human pathogens growing in epithelial colorectal adenocarcinoma (Caco-2) cells. PLoS One5:e10586 [CrossRef][PubMed]
    [Google Scholar]
  34. Hart P. D., Young M. R.. 1991; Ammonium chloride, an inhibitor of phagosome-lysosome fusion in macrophages, concurrently induces phagosome-endosome fusion, and opens a novel pathway: studies of a pathogenic mycobacterium and a nonpathogenic yeast. J Exp Med174:881–889 [CrossRef][PubMed]
    [Google Scholar]
  35. Horzempa J., O'Dee D. M., Shanks R. M., Nau G. J.. 2010; Francisella tularensis DeltapyrF mutants show that replication in nonmacrophages is sufficient for pathogenesis in vivo . Infect Immun78:2607–2619 [CrossRef][PubMed]
    [Google Scholar]
  36. Khor B., Gardet A., Xavier R. J.. 2011; Genetics and pathogenesis of inflammatory bowel disease. Nat New Biol474:307–317[CrossRef]
    [Google Scholar]
  37. Kim J. K., Jang H. A., Won Y. J., Kikuchi Y., Han S. H., Kim C. H., Nikoh N., Fukatsu T., Lee B. L.. 2014; Purine biosynthesis-deficient Burkholderia mutants are incapable of symbiotic accommodation in the stinkbug. ISME J8:552–563 [CrossRef][PubMed]
    [Google Scholar]
  38. Krause D. O., Little A. C., Dowd S. E., Bernstein C. N.. 2011; Complete genome sequence of adherent invasive Escherichia col i UM146 isolated from Ileal Crohn's disease biopsy tissue. J Bacteriol193:583 [CrossRef][PubMed]
    [Google Scholar]
  39. Lapaquette P., Bringer M. A., Darfeuille-Michaud A.. 2012; Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response. Cell Microbiol14:791–807 [CrossRef][PubMed]
    [Google Scholar]
  40. Maltby R., Leatham-Jensen M. P., Gibson T., Cohen P. S., Conway T.. 2013; Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157 : H7 in the mouse intestine. PLoS One8:e53957 [CrossRef][PubMed]
    [Google Scholar]
  41. Martin H. M., Campbell B. J., Hart C. A., Mpofu C., Nayar M., Singh R., Englyst H., Williams H. F., Rhodes J. M.. 2004; Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology127:80–93[PubMed][CrossRef]
    [Google Scholar]
  42. Martinez-Medina M., Aldeguer X., Lopez-Siles M., González-Huix F., López-Oliu C., Dahbi G., Blanco J. E., Blanco J., Garcia-Gil L. J., Darfeuille-Michaud A.. 2009; Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease. Inflamm Bowel Dis15:872–882 [CrossRef][PubMed]
    [Google Scholar]
  43. Miquel S., Peyretaillade E., Claret L., de Vallée A., Dossat C., Vacherie B., Zineb E. H., Segurens B., Barbe V. et al. 2010; Complete genome sequence of Crohn's disease-associated adherent-invasive E. coli strain LF82. PLoS One5:e12714 [CrossRef][PubMed]
    [Google Scholar]
  44. Molodecky N. A., Soon I. S., Rabi D. M., Ghali W. A., Ferris M., Chernoff G., Benchimol E. I., Panaccione R., Ghosh S. et al. 2012; Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology142:46–54 [CrossRef][PubMed]
    [Google Scholar]
  45. Nash J. H., Villegas A., Kropinski A. M., Aguilar-Valenzuela R., Konczy P., Mascarenhas M., Ziebell K., Torres A. G., Karmali M. A., Coombes B. K.. 2010; Genome sequence of adherent-invasive Escherichia coli and comparative genomic analysis with other E. coli pathotypes. BMC Genomics11:667 [CrossRef][PubMed]
    [Google Scholar]
  46. Negroni A., Costanzo M., Vitali R., Superti F., Bertuccini L., Tinari A., Minelli F., Di Nardo G., Nuti F. et al. 2012; Characterization of adherent-invasive Escherichia coli isolated from pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis18:913–924 [CrossRef][PubMed]
    [Google Scholar]
  47. Paterson G. K., Cone D. B., Peters S. E., Maskell D. J.. 2009; Redundancy in the requirement for the glycolytic enzymes phosphofructokinase (Pfk) 1 and 2 in the in vivo fitness of Salmonella enterica serovar Typhimurium. Microb Pathog46:261–265 [CrossRef][PubMed]
    [Google Scholar]
  48. Porte F., Liautard J. P., Köhler S.. 1999; Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun67:4041–4047[PubMed]
    [Google Scholar]
  49. Rhodes J. M.. 2007; The role of Escherichia coli in inflammatory bowel disease. Gut56:610–612 [CrossRef][PubMed]
    [Google Scholar]
  50. Rolhion N., Darfeuille-Michaud A.. 2007; Adherent-invasive Escherichia coli in inflammatory bowel disease. Inflamm Bowel Dis13:1277–1283 [CrossRef][PubMed]
    [Google Scholar]
  51. Ruisheng A., Grewal P. S.. 2011; purL gene expression affects biofilm formation and symbiotic persistence of Photorhabdus temperata in the nematode Heterorhabditis bacteriophora . Microbiology157:2595–2603 [CrossRef][PubMed]
    [Google Scholar]
  52. Scheltema R. A., Jankevics A., Jansen R. C., Swertz M. A., Breitling R.. 2011; PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Anal Chem83:2786–2793 [CrossRef][PubMed]
    [Google Scholar]
  53. Simpson K. W., Dogan B., Rishniw M., Goldstein R. E., Klaessig S., McDonough P. L., German A. J., Yates R. M., Russell D. G. et al. 2006; Adherent and invasive Escherichia coli is associated with granulomatous colitis in boxer dogs. Infect Immun74:4778–4792 [CrossRef][PubMed]
    [Google Scholar]
  54. Smith C. A., Want E. J., O'Maille G., Abagyan R., Siuzdak G.. 2006; XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem78:779–787 [CrossRef][PubMed]
    [Google Scholar]
  55. Smyth G. K.. 2004; Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol3:1–25 [CrossRef]
    [Google Scholar]
  56. Subramanian S., Roberts C. L., Hart C. A., Martin H. M., Edwards S. W., Rhodes J. M., Campbell B. J.. 2008; Replication of colonic Crohn's disease mucosal Escherichia coli isolates within macrophages and their susceptibility to antibiotics. Antimicrob Agents Chemother52:427–434 [CrossRef]
    [Google Scholar]
  57. Sumner L. W., Lei Z., Nikolau B. J., Saito K., Roessner U., Trengove R.. 2014; Proposed quantitative and alphanumeric metabolite identification metrics. Metabolomics10:1047–1049 [CrossRef]
    [Google Scholar]
  58. Thompson J. A., Liu M., Helaine S., Holden D. W.. 2011; Contribution of the PhoP/Q regulon to survival and replication of Salmonella enterica serovar Typhimurium in macrophages. Microbiology157:2084–2093 [CrossRef][PubMed]
    [Google Scholar]
  59. Turner K. H., Everett J., Trivedi U., Rumbaugh K. P., Whiteley M.. 2014; Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genet10:e1004518 [CrossRef][PubMed]
    [Google Scholar]
  60. Vejborg R. M., Hancock V., Petersen A. M., Krogfelt K. A., Klemm P.. 2011; Comparative genomics of Escherichia coli isolated from patients with inflammatory bowel disease. BMC Genomics12:316 [CrossRef][PubMed]
    [Google Scholar]
  61. Voth D. E., Heinzen R. A.. 2007; Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii . Cell Microbiol9:829–840 [CrossRef][PubMed]
    [Google Scholar]
  62. Waligora E. A., Fisher C. R., Hanovice N. J., Rodou A., Wyckoff E. E., Payne S. M.. 2014; Role of intracellular carbon metabolism pathways in Shigella flexneri virulence. Infect Immun82:2746–2755 [CrossRef][PubMed]
    [Google Scholar]
  63. Winchell C. G., Graham J. G., Kurten R. C., Voth D. E.. 2014; Coxiella burnetii type IV secretion-dependent recruitment of macrophage autophagosomes. Infect Immun82:2229–2238 [CrossRef][PubMed]
    [Google Scholar]
  64. Zhang Y., Rowehl L., Krumsiek J. M., Orner E. P., Shaikh N., Tarr P. I., Sodergren E., Weinstock G. M., Boedeker E. C. et al. 2015; Identification of candidate adherent-invasive E. coli signature transcripts by genomic/transcriptomic analysis. PLoS One10:e0130902 [CrossRef][PubMed]
    [Google Scholar]
  65. Zhao J., Baba T., Mori H., Shimizu K.. 2004; Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Appl Microbiol Biotechnol64:91–98 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000289
Loading
/content/journal/micro/10.1099/mic.0.000289
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error