1887

Abstract

infections result in a spectrum of clinical outcomes, and frequently the infection persists in a latent, clinically asymptomatic state. The within-host bacterial population is likely to be heterogeneous, and it is thought that persistent mycobacteria arise from a small population of viable, but non-replicating (VBNR) cells. These are likely to be antibiotic tolerant and necessitate prolonged treatment. Little is known about these persistent mycobacteria, since they are very difficult to isolate. To address this, we have successfully developed a replication reporter system for use in . This approach, termed fluorescence dilution, exploits two fluorescent reporters; a constitutive reporter allows the tracking of bacteria, while an inducible reporter enables the measurement of bacterial replication. The application of fluorescence single-cell analysis to characterize intracellular identified a distinct subpopulation of non-growing mycobacteria in murine macrophages. The presence of VBNR and actively replicating mycobacteria was observed within the same macrophage after 48 h of infection. Furthermore, our results suggest that macrophage uptake resulted in enrichment of non- or slowly replicating bacteria (as revealed by -cycloserine treatment); this population is likely to be highly enriched for persisters, based on its drug-tolerant phenotype. These results demonstrate the successful application of the novel dual fluorescence reporter system both and in macrophage infection models to provide a window into mycobacterial population heterogeneity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000288
2016-06-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/6/966.html?itemId=/content/journal/micro/10.1099/mic.0.000288&mimeType=html&fmt=ahah

References

  1. Adams K. N., Takaki K., Connolly L. E., Wiedenhoft H., Winglee K., Humbert O., Edelstein P. H., Cosma C. L., Ramakrishnan L.. 2011; Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell145:39–53 [CrossRef][PubMed]
    [Google Scholar]
  2. Aldridge B. B., Fernandez-Suarez M., Heller D., Ambravaneswaran V., Irimia D., Toner M., Fortune S. M.. 2012; Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science335:100–104 [CrossRef]
    [Google Scholar]
  3. Anes E., Peyron P., Staali L., Jordao L., Gutierrez M. G., Kress H., Hagedorn M., Maridonneau-Parini I., Skinner M. A.. 2006; Dynamic life and death interactions between Mycobacterium smegmatis and J774 macrophages. Cell Microbiol8:939–960 [CrossRef][PubMed]
    [Google Scholar]
  4. Balaban N. Q., Merrin J., Chait R., Kowalik L., Leibler S.. 2004; Bacterial persistence as a phenotypic switch. Science305:1622–1625 [CrossRef]
    [Google Scholar]
  5. Betts J. C., Lukey P. T., Robb L. C., McAdam R. A., Duncan K.. 2002; Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol43:717–731 [CrossRef][PubMed]
    [Google Scholar]
  6. Bhaskar A., Chawla M., Mehta M., Parikh P., Chandra P., Bhave D., Kumar D., Carroll K. S., Singh A.. 2014; Reengineering redox sensitive GFP to measure mycothiol redox potential of Mycobacterium tuberculosis during infection. PLoS Pathog10:e1003902 [CrossRef][PubMed]
    [Google Scholar]
  7. Bigger J. W.. 1944; Treatment of staphylococcal infections with penicillin. Lancet244:497–500[CrossRef]
    [Google Scholar]
  8. Carroll P., Schreuder L. J., Muwanguzi-Karugaba J., Wiles S., Robertson B. D., Ripoll J., Ward T. H., Bancroft G. J., Schaible U. E., Parish T.. 2010; Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS One5:e9823 [CrossRef][PubMed]
    [Google Scholar]
  9. Cañas-Duarte S. J., Restrepo S., Pedraza J. M.. 2014; Novel protocol for persister cells isolation. PLoS One9:e88660 [CrossRef][PubMed]
    [Google Scholar]
  10. Cohen N. R., Lobritz M. A., Collins J. J.. 2013; Microbial persistence and the road to drug resistance. Cell Host Microbe13:632–642 [CrossRef][PubMed]
    [Google Scholar]
  11. Colangeli R., Arcus V. L., Cursons R. T., Ruthe A., Karalus N., Coley K., Manning S. D., Kim S., Marchiano E., Alland D.. 2014; Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans. PLoS One9:e91024 [CrossRef][PubMed]
    [Google Scholar]
  12. Deb C., Lee C. M., Dubey V. S., Daniel J., Abomoelak B., Sirakova T. D., Pawar S., Rogers L., Kolattukudy P. E.. 2009; A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One4:e6077 [CrossRef][PubMed]
    [Google Scholar]
  13. Dhar N., McKinney J. D.. 2010; Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc Natl Acad Sci U S A107:12275–12280 [CrossRef][PubMed]
    [Google Scholar]
  14. Ford C. B., Lin P. L., Chase M. R., Shah R. R., Iartchouk O., Galagan J., Mohaideen N., Ioerger T. R., Sacchettini J. C.. 2011; Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet43:482–486 [CrossRef][PubMed]
    [Google Scholar]
  15. Garton N. J., Waddell S. J., Sherratt A. L., Lee S. M., Smith R. J., Senner C., Hinds J., Rajakumar K., Adegbola R. A.. 2008; Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med5:e75 [CrossRef][PubMed]
    [Google Scholar]
  16. Gengenbacher M., Rao S. P., Pethe K., Dick T.. 2010; Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology156:81–87 [CrossRef][PubMed]
    [Google Scholar]
  17. Gill W. P., Harik N. S., Whiddon M. R., Liao R. P., Mittler J. E., Sherman D. R.. 2009; A replication clock for Mycobacterium tuberculosis . Nat Med15:211–214 [CrossRef][PubMed]
    [Google Scholar]
  18. Hartman-Adams H., Clark K., Juckett G.. 2014; Update on latent tuberculosis infection. Am Fam Physician89:889–896[PubMed]
    [Google Scholar]
  19. Helaine S., Kugelberg E.. 2014; Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol22:417–424 [CrossRef][PubMed]
    [Google Scholar]
  20. Helaine S., Cheverton A. M., Watson K. G., Faure L. M., Matthews S. A., Holden D. W.. 2014; Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science343:204–208 [CrossRef]
    [Google Scholar]
  21. Helaine S., Thompson J. A., Watson K. G., Liu M., Boyle C., Holden D. W.. 2010; Dynamics of intracellular bacterial replication at the single cell level. Proc Natl Acad Sci U S A107:3746–3751 [CrossRef][PubMed]
    [Google Scholar]
  22. Inouye S., Tsuji F. I.. 1994; Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett341:277–280 [CrossRef][PubMed]
    [Google Scholar]
  23. Keren I., Minami S., Rubin E., Lewis K.. 2011; Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio2:e0010011 [CrossRef][PubMed]
    [Google Scholar]
  24. Luthuli B. B., Purdy G. E., Balagaddé F. K.. 2015; Confinement-induced drug-tolerance in mycobacteria mediated by an efflux mechanism. PLoS One10:e0136231 [CrossRef][PubMed]
    [Google Scholar]
  25. Maglica Ž., Özdemir E., McKinney J. D.. 2015; Single-cell tracking reveals antibiotic-induced changes in mycobacterial energy metabolism. MBio6:e0223614 [CrossRef][PubMed]
    [Google Scholar]
  26. Maisonneuve E., Shakespeare L. J., Jørgensen M. G., Gerdes K.. 2011; Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci U S A108:13206–13211 [CrossRef][PubMed]
    [Google Scholar]
  27. Mak P. A., Rao S. P., Ping Tan M., Lin X., Chyba J., Tay J., Ng S. H., Tan B. H., Cherian J.. 2012; A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis . ACS Chem Biol7:1190–1197 [CrossRef][PubMed]
    [Google Scholar]
  28. Manina G., Dhar N., McKinney J. D.. 2015; Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell Host Microbe17:32–46 [CrossRef][PubMed]
    [Google Scholar]
  29. Mitchison D. A., Coates A. R.. 2004; Predictive in vitro models of the sterilizing activity of anti-tuberculosis drugs. Curr Pharm Des10:3285–3295 [CrossRef][PubMed]
    [Google Scholar]
  30. Parker A. E., Bermudez L. E.. 1997; Expression of the green fluorescent protein (GFP) in mycobacterium avium as a tool to study the interaction between mycobacteria and host cells. Microb Pathog22:193–198 [CrossRef][PubMed]
    [Google Scholar]
  31. Prakash H., Lüth A., Grinkina N., Holzer D., Wadgaonkar R., Gonzalez A. P., Anes E., Kleuser B.. 2010; Sphingosine kinase-1 (SphK-1) regulates Mycobacterium smegmatis infection in macrophages. PLoS One5:e10657 [CrossRef][PubMed]
    [Google Scholar]
  32. Raffetseder J., Pienaar E., Blomgran R., Eklund D., Patcha Brodin V., Andersson H., Welin A., Lerm M., Brodin P. V.. 2014; Replication rates of Mycobacterium tuberculosis in human macrophages do not correlate with mycobacterial antibiotic susceptibility. PLoS One9:e112426 [CrossRef][PubMed]
    [Google Scholar]
  33. Rodríguez J. G., Hernández A. C., Helguera-Repetto C., Aguilar Ayala D., Guadarrama-Medina R., Anzóla J. M., Bustos J. R., Zambrano M. M., González-Y-Merchand J., Gonzalez Y. M. J.. 2014; Global adaptation to a lipid environment triggers the dormancy-related phenotype of Mycobacterium tuberculosis . MBio5:e0112514 [CrossRef][PubMed]
    [Google Scholar]
  34. Roostalu J., Jõers A., Luidalepp H., Kaldalu N., Tenson T.. 2008; Cell division in Escherichia coli cultures monitored at single cell resolution. BMC Microbiol8:68 [CrossRef][PubMed]
    [Google Scholar]
  35. Sampson S. L., Dascher C. C., Sambandamurthy V. K., Russell R. G., Jacobs W. R., Bloom B. R., Hondalus M. K.. 2004; Protection elicited by a double leucine and pantothenate auxotroph of Mycobacterium tuberculosis in guinea pigs. Infect Immun72:3031–3037 [CrossRef][PubMed]
    [Google Scholar]
  36. Seeliger J. C., Topp S., Sogi K. M., Previti M. L., Gallivan J. P., Bertozzi C. R.. 2012; A riboswitch-based inducible gene expression system for mycobacteria. PLoS One7:e29266 [CrossRef][PubMed]
    [Google Scholar]
  37. Shcherbo D., Shemiakina I. I., Ryabova A. V., Luker K. E., Schmidt B. T., Souslova E. A., Gorodnicheva T. V., Strukova L., Shidlovskiy K. M.. 2010; Near-infrared fluorescent proteins. Nat Methods7:827–829 [CrossRef][PubMed]
    [Google Scholar]
  38. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R.. 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol4:1911–1919 [CrossRef][PubMed]
    [Google Scholar]
  39. Tan S., Sukumar N., Abramovitch R. B., Parish T., Russell D. G.. 2013; Mycobacterium tuberculosis responds to chloride and pH as synergistic cues to the immune status of its host cell. PLoS Pathog9:e1003282 [CrossRef][PubMed]
    [Google Scholar]
  40. Wakamoto Y., Dhar N., Chait R., Schneider K., Signorino-Gelo F., Leibler S., McKinney J. D.. 2013; Dynamic persistence of antibiotic-stressed mycobacteria. Science339:91–95 [CrossRef]
    [Google Scholar]
  41. Walter N. D., Dolganov G. M., Garcia B. J., Worodria W., Andama A., Musisi E., Ayakaka, I, Van T. T., Voskuil M. I.. 2015; Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis during treatment of human tuberculosis. J Infect Dis212:990–998 [CrossRef][PubMed]
    [Google Scholar]
  42. WHO 2015; Global Tuberculosis Report 2014 Geneva: World Health Organization;
    [Google Scholar]
  43. Zelmer A., Carroll P., Andreu N., Hagens K., Mahlo J., Redinger N., Robertson B. D., Wiles S., Ward T. H.. 2012; A new in vivo model to test anti-tuberculosis drugs using fluorescence imaging. J Antimicrob Chemother67:1948–1960 [CrossRef][PubMed]
    [Google Scholar]
  44. Zhang Y., Yew W. W., Barer M. R.. 2012; Targeting persisters for tuberculosis control. Antimicrob Agents Chemother56:2223–2230 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000288
Loading
/content/journal/micro/10.1099/mic.0.000288
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error