1887

Abstract

subsp. is a fish pathogen known to have a rich plasmidome. In the present study, we discovered an isolate of this bacterium bearing an additional unidentified small plasmid. After having sequenced the DNA of that isolate by next-generation sequencing, it appeared that the new small plasmid is a ColE1-type replicon plasmid, named here pAsa7. This plasmid bears a functional chloramphenicol-acetyltransferase-encoding gene (-pAsa7) previously unknown in and responsible for resistance to chloramphenicol. A comparison of pAsa7 with pAsa2, the only known ColE1-type replicon plasmid usually found in subsp. revealed that even if both plasmids share a high structural similarity, it is still unclear if pAsa7 is a derivative of pAsa2 since they showed several mutations at the nucleotide level. Transcriptomic analysis revealed that the -pAsa4 gene, another chloramphenicol-acetyltransferase-encoding gene, found on the large plasmid pAsa4, was significantly more transcribed than -pAsa7. This was correlated with a higher chloramphenicol resistance for isolates bearing pAsa4 compared with the one having pAsa7. Finally, a phylogenetic analysis showed that both CAT-pAsa4 and CAT-pAsa7 proteins were in different clusters. The clustering was supported by the identity of residues involved in the catalytic site. In addition, to give a better understanding of the large drug-resistance panel of , this study reinforces the hypothesis that subsp. is a considerable reservoir for mobile genetic elements such as plasmids.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000286
2016-06-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/6/942.html?itemId=/content/journal/micro/10.1099/mic.0.000286&mimeType=html&fmt=ahah

References

  1. Adams C. A., Austin B., Meaden P. G., McIntosh D.. 1998; Molecular characterization of plasmid-mediated oxytetracycline resistance in Aeromonas salmonicida . Appl Environ Microbiol64:4194–4201[PubMed]
    [Google Scholar]
  2. Aoki T., Mitoma Y., Crosa J. H.. 1986; The characterization of a conjugative R-plasmid isolated from Aeromonas salmonicida . Plasmid16:213–218 [CrossRef][PubMed]
    [Google Scholar]
  3. Attéré S. A., Vincent A. T., Trudel M. V., Chanut R., Charette S. J.. 2015; Diversity and homogeneity among small plasmids of Aeromonas salmonicida subsp. salmonicida linked with geographical origin. Front Microbiol6:1274 [CrossRef][PubMed]
    [Google Scholar]
  4. Beaz-Hidalgo R., Figueras M. J.. 2012; Molecular detection and characterization of furunculosis and other Aeromonas fish infections. In Health and Environment in Aquaculture pp.97–132 Edited by Carvalho E.. Rijeka, Croatia: Intech;
    [Google Scholar]
  5. Beitz E.. 2000; TEXshade: shading and labeling of multiple sequence alignments using LATEX2 epsilon. Bioinformatics16:135–139 [CrossRef][PubMed]
    [Google Scholar]
  6. Belland R. J., Trust T. J.. 1987; Cloning of the gene for the surface array protein of Aeromonas salmonicida and evidence linking loss of expression with genetic deletion. J Bacteriol169:4086–4091[PubMed]
    [Google Scholar]
  7. Belland R. J., Trust T. J.. 1989; Aeromonas salmonicida plasmids: plasmid-directed synthesis of proteins in vitro and in Escherichia coli minicells. Microbiology135:513–524 [CrossRef]
    [Google Scholar]
  8. Biswas T., Houghton J. L., Garneau-Tsodikova S., Tsodikov O. V.. 2012; The structural basis for substrate versatility of chloramphenicol acetyltransferase CATI. Protein Sci21:520–530 [CrossRef][PubMed]
    [Google Scholar]
  9. Bolger A. M., Lohse M., Usadel B.. 2014; Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  10. Boyd J., Williams J., Curtis B., Kozera C., Singh R., Reith M.. 2003; Three small, cryptic plasmids from Aeromonas salmonicida subsp. salmonicida A449. Plasmid50:131–144 [CrossRef][PubMed]
    [Google Scholar]
  11. Burr S. E., Frey J.. 2007; Analysis of type III effector genes in typical and atypical Aeromonas salmonicida . J Fish Dis30:711–714 [CrossRef][PubMed]
    [Google Scholar]
  12. Burr S. E., Pugovkin D., Wahli T., Segner H., Frey J.. 2005; Attenuated virulence of an Aeromonas salmonicida subsp.salmonicida type III secretion mutant in a rainbow trout model. Microbiology151:2111–2118 [CrossRef][PubMed]
    [Google Scholar]
  13. Cabello F. C., Godfrey H. P., Tomova A., Ivanova L., Dölz H., Millanao A., Buschmann A. H.. 2013; Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol15:1917–1942 [CrossRef][PubMed]
    [Google Scholar]
  14. Camps M.. 2010; Modulation of ColE1-like plasmid replication for recombinant gene expression. Recent Pat DNA Gene Seq4:58–73 [CrossRef]
    [Google Scholar]
  15. Charette S. J., Brochu F., Boyle B., Filion G., Tanaka K. H., Derome N.. 2012; Draft genome sequence of the virulent strain 01-B526 of the fish pathogen Aeromonas salmonicida . J Bacteriol194:722–723 [CrossRef][PubMed]
    [Google Scholar]
  16. Chen C. Y., Lindsey R. L., Strobaugh T. P., Frye J. G., Meinersmann R. J.. 2010; Prevalence of ColE1-like plasmids and kanamycin resistance genes in Salmonella enterica serovars. Appl Environ Microbiol76:6707–6714 [CrossRef][PubMed]
    [Google Scholar]
  17. Coil D., Jospin G., Darling A. E.. 2015; A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics31:587–889 [CrossRef][PubMed]
    [Google Scholar]
  18. Dacanay A., Knickle L., Solanky K. S., Boyd J. M., Walter J. A., Brown L. L., Johnson S. C., Reith M.. 2006; Contribution of the type III secretion system (TTSS) to virulence of Aeromonas salmonicida subsp. salmonicida . Microbiology152:1847–1856 [CrossRef][PubMed]
    [Google Scholar]
  19. Dallaire-Dufresne S., Tanaka K. H., Trudel M. V., Lafaille A., Charette S. J.. 2014a; Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Vet Microbiol169:1–7[CrossRef]
    [Google Scholar]
  20. Dallaire-Dufresne S., Emond-Rheault J.-G., Attéré S. A., Tanaka K. H., Trudel M. V., Frenette M., Charette S. J.. 2014b; Optimization of a plasmid electroporation protocol for Aeromonas salmonicida subsp. salmonicida . J Microbiol Methods98:44–49[CrossRef]
    [Google Scholar]
  21. Darriba D., Taboada G. L., Doallo R., Posada D.. 2011; ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics27:1164–1165 [CrossRef][PubMed]
    [Google Scholar]
  22. Darty K., Denise A., Ponty Y.. 2009; VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics25:1974–1975 [CrossRef][PubMed]
    [Google Scholar]
  23. Dautremepuits C., Fortier M., Croisetiere S., Belhumeur P., Fournier M.. 2006; Modulation of juvenile brook trout (Salvelinus fontinalis) cellular immune system after Aeromonas salmonicida challenge. Vet Immunol Immunopathol110:27–36 [CrossRef][PubMed]
    [Google Scholar]
  24. Edgar R. C.. 2004; MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  25. Fehr D., Casanova C., Liverman A., Blazkova H., Orth K., Dobbelaere D., Frey J., Burr S. E.. 2006; AopP, a type III effector protein of Aeromonas salmonicida, inhibits the NF-kappaB signalling pathway. Microbiology152:2809–2818 [CrossRef][PubMed]
    [Google Scholar]
  26. García-Alcalde F., Okonechnikov K., Carbonell J., Cruz L. M., Götz S., Tarazona S., Dopazo J., Meyer T. F., Conesa A.. 2012; Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics28:2678–2679 [CrossRef][PubMed]
    [Google Scholar]
  27. Han J. E., Kim J. H., Choresca C. H., Shin S. P., Jun J. W., Chai J. Y., Park S. C.. 2012a; First description of ColE-type plasmid in Aeromonas spp. carrying quinolone resistance (qnrS2) gene. Lett Appl Microbiol55:290–294 [CrossRef]
    [Google Scholar]
  28. Han J. E., Kim J. H., Choresca C. H., Shin S. P., Jun J. W., Chai J. Y., Park S. C.. 2012b; Prevalence of tet gene and complete genome sequencing of tet gene-encoded plasmid (pAHH01) isolated from Aeromonas species in South Korea. J Appl Microbiol112:631–638[CrossRef]
    [Google Scholar]
  29. Hänninen M. L., Hirvelä-Koski V.. 1997; Molecular and phenotypic methods for the characterization of atypical Aeromonas salmonicida . Vet Microbiol56:147–158 [CrossRef][PubMed]
    [Google Scholar]
  30. Kim D., Rhee Y., Rhodes D., Sharma V., Sorenson O., Greener A., Smider V.. 2005; Directed evolution and identification of control regions of ColE1 plasmid replication origins using only nucleotide deletions. J Mol Biol351:763–775 [CrossRef][PubMed]
    [Google Scholar]
  31. Labella A., Gennari M., Ghidini V., Trento I., Manfrin A., Borrego J. J., Lleo M. M.. 2013; High incidence of antibiotic multi-resistant bacteria in coastal areas dedicated to fish farming. Mar Pollut Bull70:197–203 [CrossRef][PubMed]
    [Google Scholar]
  32. Lartillot N., Lepage T., Blanquart S.. 2009; PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics25:2286–2288 [CrossRef][PubMed]
    [Google Scholar]
  33. Leontis N. B., Westhof E.. 2001; Geometric nomenclature and classification of RNA base pairs. RNA7:499–512[PubMed][CrossRef]
    [Google Scholar]
  34. Leontis N. B., Stombaugh J., Westhof E.. 2002; The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res30:3497–3531 [CrossRef][PubMed]
    [Google Scholar]
  35. Leslie A. G.. 1990; Refined crystal structure of type III chloramphenicol acetyltransferase at 1.75 Å resolution. J Mol Biol213:167–186 [CrossRef][PubMed]
    [Google Scholar]
  36. Li H., Durbin R.. 2009; Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25:1754–1760 [CrossRef][PubMed]
    [Google Scholar]
  37. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R.. 1000 Genome Project Data Processing Subgroup 2009; The sequence alignment/map format and SAMtools. Bioinformatics25:2078–2079 [CrossRef][PubMed]
    [Google Scholar]
  38. Lin-Chao S., Chen W. T., Wong T. T.. 1992; High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Mol Microbiol6:3385–3393[PubMed][CrossRef]
    [Google Scholar]
  39. L'Abée-Lund T. M., Sørum H.. 2002; A global non-conjugative Tet C plasmid, pRAS3, from Aeromonas salmonicida . Plasmid47:172–181 [CrossRef][PubMed]
    [Google Scholar]
  40. McArthur A. G., Waglechner N., Nizam F., Yan A., Azad M. A., Baylay A. J., Bhullar K., Canova M. J., De Pascale G., other authors. 2013; The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57:3348–3357 [CrossRef][PubMed]
    [Google Scholar]
  41. Meyer R.. 2011; Functional organization of MobB, a small protein required for efficient conjugal transfer of plasmid R1162. J Bacteriol193:3904–3911 [CrossRef][PubMed]
    [Google Scholar]
  42. Murray I. A., Lewendon A., Williams J. A., Cullis P. M., Shaw W. V., Leslie A. G.. 1991; Alternative binding modes for chloramphenicol and 1-substituted chloramphenicol analogues revealed by site-directed mutagenesis and X-ray crystallography of chloramphenicol acetyltransferase. Biochemistry30:3763–3770 [CrossRef][PubMed]
    [Google Scholar]
  43. Piotrowska M., Popowska M.. 2015; Insight into the mobilome of Aeromonas strains. Front Microbiol6: [CrossRef][PubMed]
    [Google Scholar]
  44. R Core Team 2015; R: A language and environment for statisticalcomputing. Vienna: R Foundation for Statistical Computing;https://cran.r-project.org/doc/FAQ/R-FAQ.html#Citing-R
  45. Reardon S.. 2014; Antibiotic resistance sweeping developing world. Nat News509:141–142[CrossRef]
    [Google Scholar]
  46. Reith M. E., Singh R. K., Curtis B., Boyd J. M., Bouevitch A., Kimball J., Munholland J., Murphy C., Sarty D. et al. 2008; The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics9:427 [CrossRef][PubMed]
    [Google Scholar]
  47. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M. A., Barrell B.. 2000; Artemis: sequence visualization and annotation. Bioinformatics16:944–945 [CrossRef][PubMed]
    [Google Scholar]
  48. Schmieder R., Lim Y. W., Rohwer F., Edwards R.. 2010; TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets. BMC Bioinformatics11:341 [CrossRef][PubMed]
    [Google Scholar]
  49. Schrödinger L.. 2010; The PyMOL Molecular Graphics System, Version 1.3r1https://www.pymol.org/
    [Google Scholar]
  50. Stamatakis A.. 2014; RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  51. Sørum H., L'Abée-Lund T. M., Solberg A., Wold A.. 2003; Integron-containing IncU R plasmids pRAS1 and pAr-32 from the fish pathogen Aeromonas salmonicida . Antimicrob Agents Chemother 47:1285–1290 [CrossRef][PubMed]
    [Google Scholar]
  52. Tomizawa J.. 1984; Control of ColE1 plasmid replication: the process of binding of RNA I to the primer transcript. Cell38:861–870 [CrossRef][PubMed]
    [Google Scholar]
  53. Tomizawa J.. 1986; Control of ColE1 plasmid replication: binding of RNA I to RNA II and inhibition of primer formation. Cell47:89–97 [CrossRef][PubMed]
    [Google Scholar]
  54. Vendeix F. A., Munoz A. M., Agris P. F.. 2009; Free energy calculation of modified base-pair formation in explicit solvent: a predictive model. RNA15:2278–2287 [CrossRef][PubMed]
    [Google Scholar]
  55. Vincent A. T., Trudel M. V., Paquet V. E., Boyle B., Tanaka K. H., Dallaire-Dufresne S., Daher R. K., Frenette M., Derome N. et al. 2014; Detection of variants of the pRAS3, pAB5S9, and pSN254 plasmids in Aeromonas salmonicida subsp. salmonicida: multidrug resistance, interspecies exchanges, and plasmid reshaping. Antimicrob Agents Chemother 58:7367–7374 [CrossRef][PubMed]
    [Google Scholar]
  56. Vincent A. T., Tanaka K. H., Trudel M. V., Frenette M., Derome N., Charette S. J.. 2015; Draft genome sequences of two Aeromonas salmonicida subsp. salmonicida isolates harboring plasmids conferring antibiotic resistance. FEMS Microbiol Lett362:1–4 [CrossRef][PubMed]
    [Google Scholar]
  57. Vincent A. T., Trudel M. V., Freschi L., Nagar V., Gagné-Thivierge C., Levesque R. C., Charette S. J.. 2016; Increasing genomic diversity and evidence of constrained lifestyle evolution due to insertion sequences in Aeromonas salmonicida . BMC Genomics17:1–12 [CrossRef]
    [Google Scholar]
  58. Wang Z., Yuan Z., Xiang L., Shao J., Wegrzyn G.. 2006; tRNA-dependent cleavage of the ColE1 plasmid-encoded RNA I. Microbiology152:3467–3476 [CrossRef][PubMed]
    [Google Scholar]
  59. Wróbel B., Wegrzyn G.. 1998; Replication regulation of ColE1-like plasmids in amino acid-starved Escherichia coli . Plasmid39:48–62 [CrossRef][PubMed]
    [Google Scholar]
  60. Wu Y. C., Liu S. T.. 2010; A sequence that affects the copy number and stability of pSW200 and ColE1. J Bacteriol192:3654–3660 [CrossRef][PubMed]
    [Google Scholar]
  61. Xia X.. 2013; DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol30:1720–1728 [CrossRef][PubMed]
    [Google Scholar]
  62. Zhang Z., Xiao J., Wu J., Zhang H., Liu G., Wang X., Dai L.. 2012; ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochem Biophys Res Commun419:779–781 [CrossRef][PubMed]
    [Google Scholar]
  63. Zuker M.. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000286
Loading
/content/journal/micro/10.1099/mic.0.000286
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error