1887

Abstract

W3-18-1 harbours two periplasmic nitrate reductase (Nap) gene clusters, NapC-associated EDABC) and CymA-dependent DAGHB), for dissimilatory nitrate respiration. CymA is a member of the NapC/NirT quinol dehydrogenase family and acts as a hub to support different respiratory pathways, including those on iron [Fe(III)] and manganese [Mn(III, IV)] (hydr)oxide, nitrate, nitrite, fumarate and arsenate in strains. However, in our analysis it was shown that another NapC/NirT family protein, NapC, was only involved in nitrate reduction, although both CymA and NapC can transfer quinol-derived electrons to a periplasmic terminal reductase or an electron acceptor. Furthermore, our results showed that NapC could only interact specifically with the Nap-alpha nitrate reductase while CymA could interact promiscuously with Nap-alpha, Nap-beta and the NrfA nitrite reductase for nitrate and nitrite reduction. To further explore the difference in specificity, site-directed mutagenesis on both CymA and NapC was conducted and the phenotypic changes in nitrate and nitrite reduction were tested. Our analyses demonstrated that the Lys-91 residue played a key role in nitrate reduction for quinol oxidation and the Asp-166 residue might influence the maturation of CymA. The Asp-97 residue might be one of the key factors that influence the interaction of CymA with the cytochromes NapB and NrfA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000285
2016-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/6/930.html?itemId=/content/journal/micro/10.1099/mic.0.000285&mimeType=html&fmt=ahah

References

  1. Beliaev A. S. , Klingeman D. M. , Klappenbach J. A. , Wu L. , Romine M. F. , Tiedje J. M. , Nealson K. H. , Fredrickson J. K. , Zhou J. . ( 2005;). Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. . J Bacteriol 187: 7138–7145. [CrossRef] [PubMed]
    [Google Scholar]
  2. Berks B. C. , Richardson D. J. , Reilly A. , Willis A. C. , Ferguson S. J. . ( 1995;). The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha . . Biochem J 309: 983–992.[PubMed] [CrossRef]
    [Google Scholar]
  3. Botsford J. L. , Harman J. G. . ( 1992;). Cyclic AMP in prokaryotes. . Microbiol Rev 56: 100–122.[PubMed]
    [Google Scholar]
  4. Chen Y. , Wang F. , Xu J. , Mehmood M. A. , Xiao X. . ( 2011;). Physiological and evolutionary studies of NAP systems in Shewanella piezotolerans WP3. . ISME J 5: 843–855. [CrossRef] [PubMed]
    [Google Scholar]
  5. China E P A. . ( 2002;). Water and Wastewater Monitoring Methods. , 4th edn., 266–274. Chinese Environmental Science Publishing House;.
    [Google Scholar]
  6. Cordova C. D. , Schicklberger M. F. , Yu Y. , Spormann A. M. . ( 2011;). Partial functional replacement of CymA by SirCD in Shewanella oneidensis MR-1. . J Bacteriol 193: 2312–2321. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cruz-García C. , Murray A. E. , Klappenbach J. A. , Stewart V. , Tiedje J. M. . ( 2007;). Respiratory nitrate ammonification by Shewanella oneidensis MR-1. . J Bacteriol 189: 656–662. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dong Y. , Wang J. , Fu H. , Zhou G. , Shi M. , Gao H. . ( 2012;). A Crp-dependent two-component system regulates nitrate and nitrite respiration in Shewanella oneidensis . . PLoS One 7: e51643. [CrossRef] [PubMed]
    [Google Scholar]
  9. Fonseca B. M. , Paquete C. M. , Neto S. E. , Pacheco I. , Soares C. M. , Louro R. O. . ( 2013;). Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1 . . Biochem J 449: 101–108. [CrossRef] [PubMed]
    [Google Scholar]
  10. Francis R. T. , Becker R. R. . ( 1984;). Specific indication of hemoproteins in polyacrylamide gels using a double-staining process. . Anal Biochem 136: 509–514.[PubMed] [CrossRef]
    [Google Scholar]
  11. Fredrickson , Romine M. F. , Beliaev A. S. , Auchtung J. M. , Driscoll M. E. , Gardner T. S. , Nealson K. H. , Osterman A. L. , Pinchuk G. et al. ( 2008;). Towards environmental systems biology of Shewanella . . Nat Rev Microbiol 6: 592–603. [CrossRef] [PubMed]
    [Google Scholar]
  12. Fu H. , Chen H. , Wang J. , Zhou G. , Zhang H. , Zhang L. , Gao H. . ( 2013;). Crp-dependent cytochrome bd oxidase confers nitrite resistance to Shewanella oneidensis . . Environ Microbiol 15: 2198–2212. [CrossRef] [PubMed]
    [Google Scholar]
  13. Fu H. , Jin M. , Ju L. , Mao Y. , Gao H. . ( 2014;). Evidence for function overlapping of CymA and the cytochrome bc1 complex in the Shewanella oneidensis nitrate and nitrite respiration. . Environ Microbiol 16: 3181–3195. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gao H. , Wang X. , Yang Z. K. , Chen J. , Liang Y. , Chen H. , Palzkill T. , Zhou J. . ( 2010;). Physiological roles of ArcA, Crp, and EtrA and their interactive control on aerobic and anaerobic respiration in Shewanella oneidensis . . PLoS One 5: e15295. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gao H. , Yang Z. K. , Barua S. , Reed S. B. , Romine M. F. , Nealson K. H. , Fredrickson J. K. , Tiedje J. M. , Zhou J. . ( 2009;). Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA. . ISME J 3: 966–976. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gescher J. S. , Cordova C. D. , Spormann A. M. . ( 2008;). Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases. . Mol Microbiol 68: 706–719. [CrossRef] [PubMed]
    [Google Scholar]
  17. Gilda J. E. , Gomes A. V. . ( 2013;). Stain-free total protein staining is a superior loading control to β-actin for Western blots. . Anal Biochem 440: 186–188. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hau H. H. , Gralnick J. A. . ( 2007;). Ecology and biotechnology of the genus Shewanella . . Annu Rev Microbiol 61: 237–258. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kovach M. E. , Elzer P. H. , Hill D. S. , Robertson G. T. , Farris M. A. , Roop R. M. , Peterson K. M. . ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. . Gene 166: 175–176. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kovach M. E. , Phillips R. W. , Elzer P. H. , Roop R. M. , Peterson K. M. . ( 1994;). pBBR1MCS: a broad-host-range cloning vector. . Biotechniques 16: 800–802.[PubMed]
    [Google Scholar]
  21. Li D.-B. , Cheng Y.-Y. , Wu C. , Li W.-W. , Li N. , Yang Z.-C. , Tong Z.-H. , Yu H.-Q. . ( 2014;). Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. . Sci Rep 4: [PubMed]
    [Google Scholar]
  22. Livak K. J. , Schmittgen T. D. . ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. . Methods 25: 402–408. [CrossRef] [PubMed]
    [Google Scholar]
  23. Marritt S. J. , Lowe T. G. , Bye J. , McMillan D. G. G. , Shi L. , Fredrickson J. , Zachara J. , Richardson D. J. , Cheesman M. R. et al. ( 2012a;). A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella . . Biochem J 444: 465–474.[CrossRef]
    [Google Scholar]
  24. Marritt S. J. , McMillan D. G. G. , Shi L. , Fredrickson J. K. , Zachara J. M. , Richardson D. J. , Jeuken L. J. C. , Butt J. N. . ( 2012b;). The roles of cyma in support of the respiratory flexibility of shewanella oneidensis MR-1. . Biochem Soc T 40: 1217–1221.[CrossRef]
    [Google Scholar]
  25. McMillan D. G. , Marritt S. J. , Butt J. N. , Jeuken L. J. . ( 2012;). Menaquinone-7 is specific cofactor in tetraheme quinol dehydrogenase CymA. . J Biol Chem 287: 14215–14225. [CrossRef] [PubMed]
    [Google Scholar]
  26. Meyer T. E. , Tsapin A. I. , Vandenberghe I. , de Smet L. , Frishman D. , Nealson K. H. , Cusanovich M. A. , van Beeumen J. J. . ( 2004;). Identification of 42 possible cytochrome C genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. . OMICS 8: 57–77. [CrossRef] [PubMed]
    [Google Scholar]
  27. Murphy J. N. , Saltikov C. W. . ( 2007;). The cymA gene, encoding a tetraheme c-type cytochrome, is required for arsenate respiration in Shewanella species. . J Bacteriol 189: 2283–2290. [CrossRef] [PubMed]
    [Google Scholar]
  28. Murray A. E. , Lies D. , Li G. , Nealson K. , Zhou J. , Tiedje J. M. . ( 2001;). DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes. . P Natl Acad Sci USA 98: 9853–9858.[CrossRef]
    [Google Scholar]
  29. Myers C. R. , Myers J. M. . ( 1997;). Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome C required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. . J Bacteriol 179: 1143–1152.[PubMed]
    [Google Scholar]
  30. Myers C. R. , Nealson K. H. . ( 1988;). Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. . Science 240: 1319–1321. [CrossRef] [PubMed]
    [Google Scholar]
  31. Myers J. M. , Myers C. R. . ( 2000;). Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. . J Bacteriol 182: 67–75.[PubMed] [CrossRef]
    [Google Scholar]
  32. Neto S. E. , Fonseca B. M. , Maycock C. , Louro R. O. . ( 2014;). Analysis of the residual alignment of a paramagnetic multiheme cytochrome by NMR. . Chem Commun (Camb) 50: 4561–4563. [CrossRef] [PubMed]
    [Google Scholar]
  33. Nicholas D. J. D. , Nason A. . ( 1957;). Determination of nitrate and nitrite. . Method Enzymol 3: 981–984.[CrossRef]
    [Google Scholar]
  34. Pinchuk G. E. , Rodionov D. A. , Yang C. , Li X. , Osterman A. L. , Dervyn E. , Geydebrekht O. V. , Reed S. B. , Romine M. F. et al. ( 2009;). Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. . P Natl Acad Sci 106: 2874–2879.[CrossRef]
    [Google Scholar]
  35. Potter L. , Angove H. , Richardson D. , Cole J. . ( 2001;). Nitrate reduction in the periplasm of gram-negative bacteria. . Adv Microb Physiol 45: 51–112.[PubMed] [CrossRef]
    [Google Scholar]
  36. Qiu D. , Wei H. , Tu Q. , Yang Y. , Xie M. , Chen J. , Pinkerton M. H., Jr. , Liang Y. , He Z. , Zhou J . ( 2013;). Combined genomics and experimental analyses of respiratory characteristics of Shewanella putrefaciens W3-18-1. . Appl Environ Microbiol 79: 5250–5257. [CrossRef] [PubMed]
    [Google Scholar]
  37. Roldán M. D. , Sears H. J. , Cheesman M. R. , Ferguson S. J. , Thomson A. J. , Berks B. C. , Richardson D. J. . ( 1998;). Spectroscopic characterization of a novel multiheme c-type cytochrome widely implicated in bacterial electron transport. . J Biol Chem 273: 28785–28790.[PubMed] [CrossRef]
    [Google Scholar]
  38. Saffarini D. A. , Schultz R. , Beliaev A. . ( 2003;). Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis . . J Bacteriol 185: 3668–3671.[PubMed] [CrossRef]
    [Google Scholar]
  39. Schmittgen T. D. , Livak K. J. . ( 2008;). Analyzing real-time PCR data by the comparative C(T) method. . Nat Protoc 3: 1101–1108.[PubMed] [CrossRef]
    [Google Scholar]
  40. Schuetz B. , Schicklberger M. , Kuermann J. , Spormann A. M. , Gescher J. . ( 2009;). Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. . Appl Environ Microbiol 75: 7789–7796. [CrossRef] [PubMed]
    [Google Scholar]
  41. Simon J. , Gross R. , Einsle O. , Kroneck P. M. , Kröger A. , Klimmek O. . ( 2000;). A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes . . Mol Microbiol 35: 686–696.[PubMed] [CrossRef]
    [Google Scholar]
  42. Simpson P. J. , Richardson D. J. , Codd R. . ( 2010;). The periplasmic nitrate reductase in Shewanella: the resolution, distribution and functional implications of two NAP isoforms, NapEDABC and NapDAGHB. . Microbiology 156: 302–312. [CrossRef] [PubMed]
    [Google Scholar]
  43. Stewart V. , Bledsoe P. J. , Chen L. L. , Cai A. . ( 2009;). Catabolite repression control of napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12. . J Bacteriol 191: 996–1005. [CrossRef] [PubMed]
    [Google Scholar]
  44. Sturm G. , Richter K. , Doetsch A. , Heide H. , Louro R. O. , Gescher J. . ( 2015;). A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. . ISME J 9: 1802–1811. [CrossRef] [PubMed]
    [Google Scholar]
  45. Szeinbaum N. , Burns J. L. , DiChristina T. J. . ( 2014;). Electron transport and protein secretion pathways involved in Mn(III) reduction by Shewanella oneidensis. . Env Microbiol Rep 6: 490–500.[CrossRef]
    [Google Scholar]
  46. Thomas P. E. , Ryan D. , Levin W. . ( 1976;). An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. . Anal Biochem 75: 168–176.[PubMed] [CrossRef]
    [Google Scholar]
  47. Wan X. F. , Verberkmoes N. C. , McCue L. A. , Stanek D. , Connelly H. , Hauser L. J. , Wu L. , Liu X. , Yan T. et al. ( 2004;). Transcriptomic and proteomic characterization of the Fur modulon in the metal-reducing bacterium Shewanella oneidensis . . J Bacteriol 186: 8385–8400. [CrossRef] [PubMed]
    [Google Scholar]
  48. Welinder C. , Ekblad L. . ( 2011;). Coomassie staining as loading control in Western blot analysis. . J Proteome Res 10: 1416–1419. [CrossRef] [PubMed]
    [Google Scholar]
  49. Wu L. , Wang J. , Tang P. , Chen H. , Gao H. . ( 2011;). Genetic and molecular characterization of flagellar assembly in Shewanella oneidensis . . PLoS One 6: e21479. [CrossRef] [PubMed]
    [Google Scholar]
  50. Zargar K. , Saltikov C. W. . ( 2009;). Lysine-91 of the tetraheme c-type cytochrome CymA is essential for quinone interaction and arsenate respiration in Shewanella sp. strain ANA-3. . Arch Microbiol 191: 797–806. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000285
Loading
/content/journal/micro/10.1099/mic.0.000285
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error