1887

Abstract

Polyphosphate (polyP) degradation in stationary phase triggers biofilm formation via the LuxS quorum sensing system. In media containing excess of phosphate (Pi), high polyP levels are maintained in the stationary phase with the consequent inhibition of biofilm formation. The transcriptional-response regulator PhoB, which is activated under Pi limitation, is involved in the inhibition of biofilm formation in several bacterial species. In the current study, we report, for the first time, we believe that PhoB can be activated in non-limiting Pi conditions, leading to inhibition of biofilm formation. In fact, PhoB was activated when high polyP levels were maintained in the stationary phase, whereas it remained inactive when the polymer was degraded or absent. PhoB activation was mediated by acetyl phosphate with the consequent repression of biofilm formation owing to the downregulation of c-di-GMP synthesis and the inhibition of autoinducer-2 production. These results allowed us to propose a model showing that PhoB is a component in the signal cascade regulating biofilm formation triggered by fluctuations of polyP levels in cells during stationary phase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000281
2016-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/6/1000.html?itemId=/content/journal/micro/10.1099/mic.0.000281&mimeType=html&fmt=ahah

References

  1. Ahn K., Kornberg A. 1990; Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. J Biol Chem 265:11734–11739[PubMed]
    [Google Scholar]
  2. Akiyama M., Crooke E., Kornberg A. 1993; An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon. J Biol Chem 268:633–639[PubMed]
    [Google Scholar]
  3. Aschar-Sobbi R., Abramov A. Y., Diao C., Kargacin M. E., Kargacin G. J., French R. J., Pavlov E. 2008; High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based approach. J Fluoresc 18:859–866 [View Article][PubMed]
    [Google Scholar]
  4. Ault-Riché D., Fraley C. D., Tzeng C. M., Kornberg A. 1998; Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli . J Bacteriol 180:1841–1847[PubMed]
    [Google Scholar]
  5. Casadaban M. J., Cohen S. N. 1979; Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A 76:4530–4533[PubMed] [CrossRef]
    [Google Scholar]
  6. Chekabab S. M., Harel J., Dozois C. M. 2014; Interplay between genetic regulation of phosphate homeostasis and bacterial virulence. Virulence 5:786–793 [View Article]
    [Google Scholar]
  7. Cherepanov P. P., Wackernagel W. 1995; Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14 [View Article][PubMed]
    [Google Scholar]
  8. Eisenbach M. 1996; Control of bacterial chemotaxis. Mol Microbiol 20:903–910[PubMed] [CrossRef]
    [Google Scholar]
  9. Fisher S. L., Jiang W., Wanner B. L., Walsh C. T. 1995; Cross-talk between the histidine protein kinase VanS and the response regulator PhoB. Characterization and identification of a VanS domain that inhibits activation of PhoB. J Biol Chem 270:23143–23149[PubMed] [CrossRef]
    [Google Scholar]
  10. Gray M. J., Jakob U. 2015; Oxidative stress protection by polyphosphate new roles for an old player. Curr Opin Microbiol 24:1–6 [View Article][PubMed]
    [Google Scholar]
  11. Grillo-Puertas M., Villegas J. M., Rintoul M. R., Rapisarda V. A. 2012; Polyphosphate degradation in stationary phase triggers biofilm formation via LuxS quorum sensing system in Escherichia coli . PLoS One 7:e50368 [View Article][PubMed]
    [Google Scholar]
  12. Grillo-Puertas M., Schurig-Briccio L. A., Rodríguez-Montelongo L., Rintoul M. R., Rapisarda V. A. 2014; Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli . BMC Microbiol 14:72 [View Article][PubMed]
    [Google Scholar]
  13. Grillo-Puertas M., Martínez-Zamora M. G., Rintoul M. R., Soto S. M., Rapisarda V. A. 2015; Environmental phosphate differentially affects virulence phenotypes of uropathogenic Escherichia coli isolates causative of prostatitis. Virulence 6:1–10 [View Article][PubMed]
    [Google Scholar]
  14. Haldimann A., Prahalad M. K., Fisher S. L., Kim S. K., Walsh C. T., Wanner B. L. 1996; Altered recognition mutants of the response regulator PhoB: a new genetic strategy for studying protein–protein interactions. Proc Natl Acad Sci U S A 93:14361–14366[PubMed] [CrossRef]
    [Google Scholar]
  15. Hengge R. 2009; Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273 [View Article][PubMed]
    [Google Scholar]
  16. Hsieh Y. J., Wanner B. L. 2010; Global regulation by the seven-component Pi signaling system. Curr Opin Microbiol 13:198–203 [View Article][PubMed]
    [Google Scholar]
  17. Jahid I. K., Silva A. J., Benitez J. A. 2006; Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl Environ Microbiol 72:7043–7049 [View Article][PubMed]
    [Google Scholar]
  18. Jonas K., Edwards A. N., Simm R., Romeo T., Römling U., Melefors Ö. 2009; The RNA binding protein CsrA controls c-di-GMP metabolism by directly regulating the expression of GGDEF proteins. Mol Microbiol 70:236–257 [CrossRef]
    [Google Scholar]
  19. Kim K. S., Rao N. N., Fraley C. D., Kornberg A. 2002; Inorganic polyphosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp. Proc Natl Acad Sci U S A 99:7675–7680 [View Article][PubMed]
    [Google Scholar]
  20. Kim S. K., Wilmes-Riesenberg M. R., Wanner B. L. 1996; Involvement of the sensor kinase EnvZ in the in vivo activation of the response-regulator PhoB by acetyl phosphate. Mol Microbiol 22:135–147[PubMed] [CrossRef]
    [Google Scholar]
  21. Kornberg A. 1999; Inorganic polyphosphate: a molecule of many functions. In Progress in Molecular and Subcellular Biology vol. 23 pp. 1–17 Edited by Schröder H. C., Müller W. E. G. Berlin: Springer-Verlag;
    [Google Scholar]
  22. Kornberg A., Rao N. N., Ault-Riché D. 1999; Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125 [View Article][PubMed]
    [Google Scholar]
  23. Kulaev I. S. 1979 The Biochemistry of Inorganic Polyphosphates New York: Wiley;
    [Google Scholar]
  24. Lamarche M. G., Dozois C. M., Daigle F., Caza M., Curtiss R., Dubreuil J. D., Harel J. 2005; Inactivation of the pst system reduces the virulence of an avian pathogenic Escherichia coli O78 strain. Infect Immun 73:4138–4145 [View Article][PubMed]
    [Google Scholar]
  25. Lamarche M. G., Wanner B. L., Crépin S., Harel J. 2008; The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 32:461–473 [View Article][PubMed]
    [Google Scholar]
  26. Lery L. M., Goulart C. L., Figueiredo F. R., Verdoorn K. S., Einicker-Lamas M., Gomes F. M., Machado E. A., Bisch P. M., von Kruger W. M. 2013; A comparative proteomic analysis of Vibrio cholerae O1 wild-type cells versus a phoB mutant showed that the PhoB/PhoR system is required for full growth and rpoS expression under inorganic phosphate abundance. J Proteomics 86:1–15 [View Article][PubMed]
    [Google Scholar]
  27. Makino K., Amemura M., Kim S. K., Nakata A., Shinagawa H. 1993; Role of the sigma 70 subunit of RNA polymerase in transcriptional activation by activator protein PhoB in Escherichia coli . Genes Dev 7:149–160 [View Article][PubMed]
    [Google Scholar]
  28. Mizrahi I., Biran D., Ron E. Z. 2006; Requirement for the acetyl phosphate pathway in Escherichia coli ATP-dependent proteolysis. Mol Microbiol 62:201–211 [View Article][PubMed]
    [Google Scholar]
  29. Monds R. D., Silby M. W., Mahanty H. K. 2001; Expression of the pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PA147-2. Microbiol 42:415–426
    [Google Scholar]
  30. Monds R. D., Newell P. D., Gross R. H., O'Toole G. A. 2007; Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA. Mol Microbiol 63:656–679 [View Article][PubMed]
    [Google Scholar]
  31. Motomura K., Hirota R., Ohnaka N., Okada M., Ikeda T., Morohoshi T., Ohtake H., Kuroda A. 2011; Overproduction of YjbB reduces the level of polyphosphate in Escherichia coli: a hypothetical role of YjbB in phosphate export and polyphosphate accumulation. FEMS Microbiol Lett 320:25–32 [View Article][PubMed]
    [Google Scholar]
  32. Nesmeyanova M. A. 2000; Polyphosphates and enzymes of polyphosphate metabolism in Escherichia coli . Biochemistry 65:309–314[PubMed]
    [Google Scholar]
  33. O'Toole G. A., Kolter R. 1998; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 42:449–461 [CrossRef]
    [Google Scholar]
  34. Ogawa N., Tzeng C. M., Fraley C. D., Kornberg A. 2000; Inorganic polyphosphate in Vibrio cholerae: genetic, biochemical, and physiologic features. J Bacteriol 182:6687–6693[PubMed] [CrossRef]
    [Google Scholar]
  35. Ohtake H., Kato J., Kuroda A., Wu H., Ikeda T. 1998; Regulation of bacterial phosphate taxis and polyphosphate accumulation in response to phosphate starvation stress. J Biosci 23:491–499 [View Article]
    [Google Scholar]
  36. Pratt J. T., Ismail A. M., Camilli. 2010; PhoB regulates both environmental and virulence gene expression in Vibrio cholerae . Mol Microbiol 77:1595–1605 [View Article][PubMed]
    [Google Scholar]
  37. Price-Carter M., Fazzio T. G., Vallbona E. I., Roth J. R. 2005; Polyphosphate kinase protects Salmonella enterica from weak organic acid stress. J Bacteriol 187:3088–3099 [View Article][PubMed]
    [Google Scholar]
  38. Rao N. N., Torriani A. 1990; Molecular aspects of phosphate transport in Escherichia coli . Mol Microbiol 4:1083–1090[PubMed] [CrossRef]
    [Google Scholar]
  39. Rao N. N., Kornberg A. 1996; Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli . J Bacteriol 178:1394–1400[PubMed]
    [Google Scholar]
  40. Rashid M. H., Kornberg A. 2000; Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 97:4885–4890 [View Article][PubMed]
    [Google Scholar]
  41. Rashid M. H., Rao N. N., Kornberg A. 2000a; Inorganic polyphosphate is required for motility of bacterial pathogens. J Bacteriol 182:225–227 [CrossRef]
    [Google Scholar]
  42. Rashid M. H., Rumbaugh K., Passador L., Davies D. G., Hamood A. N., Iglewski B. H., Kornberg A. 2000b; Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa . Proc Natl Acad Sci 97:9636–9641 [CrossRef]
    [Google Scholar]
  43. Römling U., Amikam D. 2006; Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9:218–228 [View Article][PubMed]
    [Google Scholar]
  44. Santos-Beneit F., Rodríguez-García A., Franco-Domínguez E., Martín J. F. 2008; Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete Streptomyces coelicolor . Microbiology 154:2356–2370 [View Article][PubMed]
    [Google Scholar]
  45. Santos-Beneit F. 2015; The Pho regulon: a huge regulatory network in bacteria. Front Microbiol 6:402 [View Article][PubMed]
    [Google Scholar]
  46. Schurig-Briccio L. A., Rintoul M. R., Volentini S. I., Farías R. N., Baldomà L., Badía J., Rodríguez-Montelongo L., Rapisarda V. A. 2008; A critical phosphate concentration in the stationary phase maintains ndh gene expression and aerobic respiratory chain activity in Escherichia coli . FEMS Microbiol Lett 284:76–83 [View Article][PubMed]
    [Google Scholar]
  47. Schurig-Briccio L. A., Farías R. N., Rodríguez-Montelongo L., Rintoul M. R., Rapisarda V. A. 2009a; Protection against oxidative stress in Escherichia coli stationary phase by a phosphate concentration-dependent genes expression. Arch Biochem Biophys 483:106–110 [CrossRef]
    [Google Scholar]
  48. Schurig-Briccio L. A., Farías R. N., Rintoul M. R., Rapisarda V. A. 2009b; Phosphate-enhancedstationary-phase fitness of Escherichia coli is related to inorganic polyphosphate level. J Bacteriol 191:4478–4481 [CrossRef]
    [Google Scholar]
  49. Simm R., Morr M., Kader A., Nimtz M., Römling U. 2004; GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134 [View Article][PubMed]
    [Google Scholar]
  50. Simon E. H., Tessman I. 1963; Thymidine-requiring mutants of phage T4. Proc Natl Acad Sci U S A 50:526–532[PubMed] [CrossRef]
    [Google Scholar]
  51. Srivastava D., Waters C. M. 2012; A tangled web: regulatory connections between quorum sensing and cyclic di-GMP. J Bacteriol 194:4485–4493 [View Article][PubMed]
    [Google Scholar]
  52. Sultan S. Z., Silva A. J., Benitez J. A. 2010; The PhoB regulatory system modulates biofilm formation and stress response in El Tor biotype Vibrio cholerae . FEMS Microbiol Lett 302:22–31 [View Article][PubMed]
    [Google Scholar]
  53. Tan S., Fraley C. D., Zhang M., Dailidiene D., Kornberg A., Berg D. E. 2005; Diverse phenotypes resulting from polyphosphate kinase gene (ppk1) inactivation in different strains of Helicobacter pylori . J Bacteriol 187:7687–7695 [View Article][PubMed]
    [Google Scholar]
  54. Ueda A., Wood T. K. 2009; Connecting quorum sensing, c-di-GMP, Pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 5:e1000483 [View Article][PubMed]
    [Google Scholar]
  55. Wanner B. L. 1996; Phosphorus assimilation and control of the phosphate regulon. In Escherichia coli and Salmonella: Celullar and Molecular Biology , pp. 1357–1381 Edited by Neidhart F. C., Curtis R. I., Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  56. Wanner B. L., Chang B. D. 1987; The phoBR operon in Escherichia coli K-12. J Bacteriol 169:5569–5574[PubMed]
    [Google Scholar]
  57. Wanner B. L., Latterell P. 1980; Mutants affected in alkaline phosphatase expression: evidence for multiple positive regulators of the phosphate regulon in Escherichia coli . Genetics 96:353–366[PubMed]
    [Google Scholar]
  58. Wanner B. L., Wilmes-Riesenberg M. R. 1992; Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli . J Bacteriol 174:2124–2130[PubMed]
    [Google Scholar]
  59. Wanner B. L., Wilmes M. R., Young D. C. 1988; Control of bacterial alkaline phosphatase synthesis and variation in an Escherichia coli K-12 phoR mutant by adenyl cyclase, the cyclic AMP receptor protein, and the phoM operon. J Bacteriol 170:1092–1102[PubMed]
    [Google Scholar]
  60. Waters C. M., Lu W., Rabinowitz J. D., Bassler B. L. 2008; Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT . J Bacteriol 190:2527–2536 [View Article][PubMed]
    [Google Scholar]
  61. Weber H., Pesavento C., Possling A., Tischendorf G., Hengge R. 2006; Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli . Mol Microbiol 62:1014–1034 [View Article][PubMed]
    [Google Scholar]
  62. Wolfe A. J., Visick K. L. 2010 The Second Messenger Cyclic di-GMP Washington, D.C.: ASM Press; [CrossRef]
    [Google Scholar]
  63. Wolfe A. J. 2010; Physiologically relevant small phosphodonors link metabolism to signal transduction. Curr Opin Microbiol 13:204–209 [View Article][PubMed]
    [Google Scholar]
  64. Xavier K. B., Bassler B. L. 2003; LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197[PubMed] [CrossRef]
    [Google Scholar]
  65. Yanofsky, Horn V., Gollnick P. 1991; Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli . J Bacteriol 173:6009–6017[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000281
Loading
/content/journal/micro/10.1099/mic.0.000281
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error