1887

Abstract

The heat shock (HS) response is an adaptation of organisms to elevated temperature. It includes substantial changes in the composition of cellular membranes, proteins and soluble carbohydrates. To protect the cellular macromolecules, thermophilic organisms have evolved mechanisms of persistent thermotolerance. Many of those mechanisms are common for thermotolerance and the HS response. However, it remains unknown whether thermophilic species respond to HS by further elevating concentrations of protective components. We investigated the composition of the soluble cytosol carbohydrates and membrane lipids of the thermophilic fungi and at optimum temperature conditions (41–43 °С), and under HS (51–53 °С). At optimum temperatures, the membrane lipid composition was characterized by a high proportion of phosphatidic acids (PA) (20–35 % of the total), which were the main components of the membrane lipids, together with phosphatidylcholines (PC), phosphatidylethanolamines (PE) and sterols (St). In response to HS, the proportion of PA and St increased, and the amount of PC and PE decreased. No decrease in the degree of fatty acid desaturation in the major phospholipids under HS was detected. The mycelium of all fungi at optimum temperatures contained high levels of trehalose (8–10 %, w/w; 60–95 % of the total carbohydrates), which is a hallmark of thermophilia. In contrast to mesophilic fungi, heat exposure decreased the trehalose level and the fungi did not acquire thermotolerance to lethal HS, indicating that trehalose plays a key role in this process. This pattern of changes appears to be conserved in the studied filamentous thermophilic fungi.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000279
2016-06-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/6/989.html?itemId=/content/journal/micro/10.1099/mic.0.000279&mimeType=html&fmt=ahah

References

  1. Balogh G., Péter M., Glatz A., Gombos I., Török Z., Horváth I., Harwood J. L., Vígh L.. 2013; . Key role of lipids in heat stress management. FEBS Lett587:1970–1980 [CrossRef][PubMed]
    [Google Scholar]
  2. Benning C., Huang Z. H., Gage D. A.. 1995; Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. Arch Biochem Biophys317:103–111 [CrossRef][PubMed]
    [Google Scholar]
  3. Brobst K. M.. 1972; Gas–liquid chromatography of trimethylsilyl derivatives: analysis of corn syrup. In Methods of Carbohydrate Chemistry pp.3–8 Edited by Whistler R. L., BeMiller J. N.. New York, London: Academic Press;
    [Google Scholar]
  4. Crowe J. H.. 2007; Trehalose as a "chemical chaperone". In Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks ( Advances in Experimental Medicine and Biology) Vol. 594 pp.143–158 Edited by Csermely P., Vígh L.. New York: Springer;[CrossRef]
    [Google Scholar]
  5. Daugaard M., Rohde M., Jäättelä M.. 2007; The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett581:3702–3710 [CrossRef][PubMed]
    [Google Scholar]
  6. De Virgilio C., Hottiger T., Dominguez J., Boller T., Wiemken A.. 1994; The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem219:179–186[PubMed][CrossRef]
    [Google Scholar]
  7. Elbein A. D., Pan Y. T., Pastuszak I., Carroll D.. 2003; New insights on trehalose: a multifunctional molecule. Glycobiology13:17R–27R [CrossRef][PubMed]
    [Google Scholar]
  8. Garton G. A., Goodwin T. W., Lijinsky W.. 1951; Studies in carotenogenesis; general conditions governing beta-carotene synthesis by the fungus Phycomyces blakesleeanus Burgeff. Biochem J48:154–163[PubMed][CrossRef]
    [Google Scholar]
  9. Hazel J. R.. 1995; . Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation?. Annu Rev Physiol57:19–42 [CrossRef][PubMed]
    [Google Scholar]
  10. Iturriaga G., Suárez R., Nova-Franco B.. 2009; Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci10:3793–3810 [CrossRef][PubMed]
    [Google Scholar]
  11. Jepsen H. F., Jensen B.. 2004; Accumulation of trehalose in the thermophilic fungus Chaetomium thermophilum var. coprophilum in response to heat or salt stress. Soil Biol Biochem36:1669–1674 [CrossRef]
    [Google Scholar]
  12. Kates M.. 1972; Techniques of lipidology: Isolation, analysis and identification of lipids. In Laboratory Techniques in Biochemistry and Molecular BiologyVol. 3 pp.267–610 Edited by Work T. S., Work E.. Amsterdam: North-Holland Publishing;[CrossRef]
    [Google Scholar]
  13. Kim I. S., Moon H. Y., Yun H. S., Jin I.. 2006; Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377. J Microbiol44:492–501[PubMed]
    [Google Scholar]
  14. Kooijman E. E., Chupin V., de Kruijff B., Burger K. N.. 2003; Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic4:162–174[PubMed][CrossRef]
    [Google Scholar]
  15. Magan N.. 2007; Fungi in extreme environments. In Environmental and Microbial Relationships, 2nd edn.Vol. 4 pp.85–103 Edited by Kubicek C. P., Druzhinina I. S.. Berlin, Heidelberg: Springer;
    [Google Scholar]
  16. Maheshwari R., Bharadwaj G., Bhat M. K.. 2000; Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev64:461–488[PubMed][CrossRef]
    [Google Scholar]
  17. McMahon H. T., Gallop J. L.. 2005; Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature438:590–596 [CrossRef][PubMed]
    [Google Scholar]
  18. Meyer F., Bloch K.. 1963; . Effect of temperature on the enzymatic synthesis of unsaturated fatty acids in Torulopsis utillis . Biochim Biophys Acta77:671–673[CrossRef]
    [Google Scholar]
  19. Mumma R. O., Fergus C. L., Sekura R. D.. 1970; . The lipids of thermophilic fungi: lipid composition comparisons between thermophilic and mesophilic fungi. Lipids5:100–103[PubMed][CrossRef]
    [Google Scholar]
  20. Mumma R. O., Sekura R. D., Fergus C. L.. 1971; . Thermophilic fungi: III. the lipids of Humicola grisea var.thermoidea . Lipids6:589–594[CrossRef]
    [Google Scholar]
  21. Nichols B. W.. 1963; Separation of the lipids of photosynthetic tissues: improvements in analysis by thin-layer chromatography. Biochim Biophys Acta70:417–422[PubMed][CrossRef]
    [Google Scholar]
  22. Oberson J., Rawyler A., Brändle R., Canevascini G.. 1999; Analysis of the heat-shock response displayed by two Chaetomium species originating from different thermal environments. Fungal Genet Biol26:178–189 [CrossRef][PubMed]
    [Google Scholar]
  23. Panaretou B., Zhai C.. 2008; . The heat shock proteins: their roles as multi-component machines for protein folding. Fungal Biol Rev22:110–119[CrossRef]
    [Google Scholar]
  24. Piper P. W.. 1993; Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae . FEMS Microbiol Rev11:339–355[PubMed][CrossRef]
    [Google Scholar]
  25. Raju K. S., Maheshwari R., Sastry P. S.. 1976; . Lipids of some thermophilic fungi. Lipids11:741–746[CrossRef]
    [Google Scholar]
  26. Reinders A., Romano I., Wiemken A., De Virgilio C.. 1999; . The thermophilic yeast Hansenula polymorpha does not require trehalose synthesis for growth at high temperatures but does for normal acquisition of thermotolerance. J Bacteriol181:4665–4668[PubMed]
    [Google Scholar]
  27. Richter K., Haslbeck M., Buchner J.. 2010; The heat shock response: life on the verge of death. Mol Cell40:253–266 [CrossRef][PubMed]
    [Google Scholar]
  28. Sadovova N. V., Feofilova E. P.. 1989; . Properties of lipid composition in the thermophilic fungus Myceliophthora thermophila . Microbiology58:169–174
    [Google Scholar]
  29. Sadovova N. V., Feofilova E. P., Gryaznova M.. 1991a; Lipid composition of subcellular fractions and trehalose synthesis in Myceliophthora thermophila . Microbiology59:495–500
    [Google Scholar]
  30. Sadovova N. V., Gryaznova M. V., Tereshina V. M., Feofilova E. P., Khomidov K. S., Egorova T. A.. 1991b; . Peculiarities of the biochemical adaptation of the thermophilic fungus Myceliophthora thermophila to temperature stress. Appl Biochem Microbiol26:447–453
    [Google Scholar]
  31. Sinensky M.. 1974; . Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli . Proc Natl Acad Sci U S A71:522–525[PubMed][CrossRef]
    [Google Scholar]
  32. Singer M. A., Lindquist S.. 1998; Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell1:639–648[PubMed][CrossRef]
    [Google Scholar]
  33. Somogyi M.. 1945; . Determination of blood sugar. J Biol Chem160:69–73
    [Google Scholar]
  34. Tereshina V. M., Memorskay A. S., Kotlova E. R., Feofilova E. P.. 2010; . Membrane lipid and cytosol carbohydrate composition in Aspergillus niger under heat shock. Microbiology79:40–46[CrossRef]
    [Google Scholar]
  35. Tereshina V. M., Memorskaya A. S., Kotlova E. R.. 2011; . The effect of different heat influences on composition of membrane lipids and cytosol carbohydrates in mycelial fungi. Microbiology80:455–460[CrossRef]
    [Google Scholar]
  36. Trent J. D., Gabrielsen M., Jensen B., Neuhard J., Olsen J.. 1994; . Acquired thermotolerance and heat shock proteins in thermophiles from the three phylogenetic domains. J Bacteriol176:6148–6152[PubMed]
    [Google Scholar]
  37. Vigh L., Escribá P. V., Sonnleitner A., Sonnleitner M., Piotto S., Maresca B., Horváth I., Harwood J. L.. 2005; . The significance of lipid composition for membrane activity: new concepts and ways of assessing function. Prog Lipid Res44:303–344 [CrossRef][PubMed]
    [Google Scholar]
  38. Weete J. D.. 1974; Introduction to fungal lipids. In Fungal Lipid Biochemistry, 1st edn. pp.3–36 Edited by Kritchevsky D.. New York: Springer;[CrossRef]
    [Google Scholar]
  39. Wharton D. A.. 2002; The hot club. In Life at the Limits: Organisms in Extreme Environments pp.129–149 Cambridge: Cambridge University Press;[CrossRef]
    [Google Scholar]
  40. Yanutsevich E. A., Memorskaya A. S., Groza N. V., Kochkina G. A., Tereshina V. M.. 2014; Heat shock response in the thermophilic fungus Rhizomucor miehei . Microbiology83:498–504 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000279
Loading
/content/journal/micro/10.1099/mic.0.000279
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error