1887

Abstract

The bacterial FtsZ-ring is an essential cytokinetic structure under tight spatiotemporal regulation. In , FtsZ polymerization and assembly into the Z-ring is controlled on multiple levels through interactions with positive and negative regulators. Among these regulatory factors are ZapC, a Z-ring stabilizer, and the conserved protease ClpXP, which has been shown to degrade FtsZ protofilaments in preference to FtsZ monomers. Here we report that ZapC and ClpX interact in a protein–protein interaction assay, and that ZapC is degraded in a ClpXP-dependent manner . The SspB adaptor protein is not required for targeting ZapC to the ClpXP proteolytic machinery. A mutation disrupting the -like sequence () stabilizes ZapC consistent with a reduction in ClpXP-mediated ZapC degradation. ZapC retains the ability to interact with FtsZ and to promote bundling indicating that WT ZapC contains discrete FtsZ and ClpX recognition motifs. Additionally, ClpAP complexes are sufficient for degradation of ZapC in the absence of ClpX . Further, chromosomal expression of suppresses filamentation of the temperature-sensitive mutant, confirming the role of ZapC as a Z-ring stabilizer. Lastly, changes in ClpXP and ZapC levels lead to cell division effects, likely through their roles in modulating FtsZ assembly dynamics. Taken together, our results indicate that the Z-ring stabilizer ZapC is a substrate of both ClpXP and ClpAP Our data also point to a more complex regulatory circuit that integrates FtsZ, ClpXP and ZapC in achieving Z-ring stability in and related species.

Keyword(s): proteolysis
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000278
2016-06-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/6/909.html?itemId=/content/journal/micro/10.1099/mic.0.000278&mimeType=html&fmt=ahah

References

  1. Adams D. W. , Errington J. . ( 2009;). Bacterial cell division: assembly, maintenance and disassembly of the Z ring. . Nat Rev Microbiol 7: 642–653. [CrossRef]
    [Google Scholar]
  2. Arjes H. A. , Lai B. , Emelue E. , Steinbach A. , Levin P. A. . ( 2015;). Mutations in the bacterial cell division protein FtsZ highlight the role of GTP binding and longitudinal subunit interactions in assembly and function. . BMC Microbiol 15: 209. [CrossRef] [PubMed]
    [Google Scholar]
  3. Baker T. A. , Sauer R. T. . ( 2012;). ClpXP, an ATP-powered unfolding and protein-degradation machine. . Biochim Biophys Acta 1823: 15–28. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bernhardt T. G. , de Boer P. A. J. . ( 2004;). Screening for synthetic lethal mutants in Escherichia coli and identification of EnvC (YibP) as a periplasmic septal ring factor with murein hydrolase activity. . Mol Microbiol 52: 1255–1269. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bi E. F. , Lutkenhaus J. . ( 1991;). FtsZ ring structure associated with division in Escherichia coli . . Nature 354: 161–164. [CrossRef] [PubMed]
    [Google Scholar]
  6. Camberg J. L. , Hoskins J. R. , Wickner S. . ( 2009;). ClpXP protease degrades the cytoskeletal protein, FtsZ, and modulates FtsZ polymer dynamics. . Proc Natl Acad Sci U S A 106: 10614–10619. [CrossRef] [PubMed]
    [Google Scholar]
  7. Camberg J. L. , Hoskins J. R. , Wickner S. . ( 2011;). The interplay of ClpXP with the cell division machinery in Escherichia coli . . J Bacteriol 193: 1911–1918. [CrossRef] [PubMed]
    [Google Scholar]
  8. Camberg J. L. , Viola M. G. , Rea L. , Hoskins J. R. , Wickner S. . ( 2014;). Location of dual sites in E. coli FtsZ important for degradation by ClpXP; one at the C-terminus and one in the disordered linker. . PLoS One 9: e94964. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dajkovic A. , Mukherjee A. , Lutkenhaus J. . ( 2008;). Investigation of regulation of FtsZ assembly by SulA and development of a model for FtsZ polymerization. . J Bacteriol 190: 2513–2526. [CrossRef] [PubMed]
    [Google Scholar]
  10. Datsenko K. A. , Wanner B. L. . ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97: 6640–6645. [CrossRef] [PubMed]
    [Google Scholar]
  11. de Boer P. A. J. . ( 2010;). Advances in understanding E. coli cell fission. . Curr Opin Microbiol 13: 730–737. [CrossRef] [PubMed]
    [Google Scholar]
  12. Durand-Heredia J. M. , Yu H. H. , De Carlo S. , Lesser C. F. , Janakiraman A. . ( 2011;). Identification and characterization of ZapC, a stabilizer of the FtsZ ring in Escherichia coli . . J Bacteriol 193: 1405–1413. [CrossRef] [PubMed]
    [Google Scholar]
  13. Durand-Heredia J. , Rivkin E. , Fan G. , Morales J. , Janakiraman A. . ( 2012;). Identification of ZapD as a cell division factor that promotes the assembly of FtsZ in Escherichia coli . . J Bacteriol 194: 3189–3198. [CrossRef] [PubMed]
    [Google Scholar]
  14. Dziedzic R. , Kiran M. , Plocinski P. , Ziolkiewicz M. , Brzostek A. , Moomey M. , Vadrevu I. S. , Dziadek J. , Madiraju M. . & other authors (2010;). Mycobacterium tuberculosis ClpX interacts with FtsZ and interferes with FtsZ assembly. . PLoS One 5: e11058. [CrossRef] [PubMed]
    [Google Scholar]
  15. Erickson H. P. , Anderson D. E. , Osawa M. . ( 2010;). FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. . Microbiol Mol Biol Rev 74: 504–528. [CrossRef] [PubMed]
    [Google Scholar]
  16. Feng J. , Michalik S. , Varming A. N. , Andersen J. H. , Albrecht D. , Jelsbak L. , Krieger S. , Ohlsen K. , Hecker M. , other authors . ( 2013;). Trapping and proteomic identification of cellular substrates of the ClpP protease in Staphylococcus aureus . . J Proteome Res 12: 547–558. [CrossRef] [PubMed]
    [Google Scholar]
  17. Flynn J. M. , Neher S. B. , Kim Y. I. , Sauer R. T. , Baker T. A. . ( 2003;). Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-Recognition signals.. . Mol Cell 11: 671–683. [CrossRef]
    [Google Scholar]
  18. Goehring N. W. , Gonzalez M. D. , Beckwith J. . ( 2006;). Premature targeting of cell division proteins to midcell reveals hierarchies of protein interactions involved in divisome assembly. . Mol Microbiol 61: 33–45. [CrossRef] [PubMed]
    [Google Scholar]
  19. Gottesman S. , Wickner S. , Jubete Y. , Singh S. K. , Kessel M. , Maurizi M. . ( 1995;). Selective, energy-dependent proteolysis in Escherichia coli . . Cold Spring Harb Symp Quant Biol 60: 533–548.[PubMed] [CrossRef]
    [Google Scholar]
  20. Haeusser D. P. , Lee A. H. , Weart R. B. , Levin P. A. . ( 2009;). ClpX inhibits FtsZ assembly in a manner that does not require its ATP hydrolysis-dependent chaperone activity. . J Bacteriol 191: 1986–1991. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hale C. A. , Shiomi D. , Liu B. , Bernhardt T. G. , Margolin W. , Niki H. , de Boer P. A. J. . ( 2011;). Identification of Escherichia coli ZapC (YcbW) as a component of the division apparatus that binds and bundles FtsZ polymers. . J Bacteriol 193: 1393–1404. [CrossRef] [PubMed]
    [Google Scholar]
  22. Haney S. A. , Glasfeld E. , Hale C. A. , Keeney D. , He Z. , de Boer P. A. J. . ( 2001;). Genetic analysis of the Escherichia coli FtsZ.ZipA interaction in the yeast two-hybrid system. Characterization of FtsZ residues essential for the interactions with ZipA and with FtsA. . J Biol Chem 276: 11980–11987.[CrossRef]
    [Google Scholar]
  23. Hoskins J. R. , Kim S. Y. , Wickner S. . ( 2000;). Substrate recognition by the ClpA chaperone component of ClpAP protease. . J Biol Chem 275: 35361–35367. [CrossRef] [PubMed]
    [Google Scholar]
  24. Huang K. H. , Durand-Heredia J. , Janakiraman A. . ( 2013;). FtsZ ring stability: of bundles, tubules, crosslinks, and curves. . J Bacteriol 195: 1859–1868. [CrossRef] [PubMed]
    [Google Scholar]
  25. Karimova G. , Pidoux J. , Ullmann A. , Ladant D. . ( 1998;). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. . Proc Natl Acad Sci U S A 95: 5752–5756.[PubMed] [CrossRef]
    [Google Scholar]
  26. Karimova G. , Ullmann A. , Ladant D. . ( 2000;). A bacterial two-hybrid system that exploits a cAMP signaling cascade in Escherichia coli . . Methods Enzymol 328: 59–73.[PubMed] [CrossRef]
    [Google Scholar]
  27. Karzai A. W. , Roche E. D. , Sauer R. T. . ( 2000;). The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. . Nat Struct Biol 7: 449–455. [CrossRef] [PubMed]
    [Google Scholar]
  28. Keiler K. C. , Waller P. R. , Sauer R. T. . ( 1996;). Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. . Science 271: 990–993.[PubMed] [CrossRef]
    [Google Scholar]
  29. Levchenko I. , Seidel M. , Sauer R. T. , Baker T. A. . ( 2000;). A specificity-enhancing factor for the ClpXP degradation machine. . Science 289: 2354–2356.[PubMed] [CrossRef]
    [Google Scholar]
  30. Li G. W. , Burkhardt D. , Gross C. , Weissman J. S. . ( 2014;). Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. . Cell 157: 624–635. [CrossRef] [PubMed]
    [Google Scholar]
  31. Lies M. , Maurizi M. R. . ( 2008;). Turnover of endogenous SsrA-tagged proteins mediated by ATP-dependent proteases in Escherichia coli . . J Biol Chem 283: 22918–22929. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lutkenhaus J. F. , Donachie W. D. . ( 1979;). Identification of the ftsA gene product. . J Bacteriol 137: 1088–1094.[PubMed]
    [Google Scholar]
  33. Lutkenhaus J. , Pichoff S. , Du S. . ( 2012;). Bacterial cytokinesis: Z ring to divisome. . Cytoskeleton (Hoboken) 69: 78–90.[CrossRef]
    [Google Scholar]
  34. Miller J. . ( 1972;). Experiments in Molecular Genetics. New York:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  35. Mukherjee A. , Lutkenhaus J. . ( 1998;). Dynamic assembly of FtsZ regulated by GTP hydrolysis. . EMBO J 17: 462–469. [CrossRef] [PubMed]
    [Google Scholar]
  36. Neher S. B. , Villén J. , Oakes E. C. , Bakalarski C. E. , Sauer R. T. , Gygi S. P. , Baker T. A. . ( 2006;). Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon. . Mol Cell 22: 193–204. [CrossRef] [PubMed]
    [Google Scholar]
  37. Ortiz C. , Kureisaite-Ciziene D. , Schmitz F. , McLaughlin S. H. , Vicente M. , Löwe J. . ( 2015;). Crystal structure of the Z-ring associated cell division protein ZapC from Escherichia coli . . FEBS Lett 589: 3822–3828. [CrossRef] [PubMed]
    [Google Scholar]
  38. Ortiz C. , Natale P. , Cueto L. , Vicente M. . ( 2016;). The keepers of the ring: regulators of FtsZ assembly. . FEMS Microbiol Rev 40: 57–67. [CrossRef] [PubMed]
    [Google Scholar]
  39. Park K. T. , Wu W. , Battaile K. P. , Lovell S. , Holyoak T. , Lutkenhaus J. . ( 2011;). The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. . Cell 146: 396–407. [CrossRef] [PubMed]
    [Google Scholar]
  40. Pazos M. , Natale P. , Vicente M. . ( 2013;). A specific role for the ZipA protein in cell division: stabilization of the FtsZ protein. . J Biol Chem 288: 3219–3226. [CrossRef] [PubMed]
    [Google Scholar]
  41. Peters N. T. , Dinh T. , Bernhardt T. G. . ( 2011;). A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators. . J Bacteriol 193: 4973–4983. [CrossRef] [PubMed]
    [Google Scholar]
  42. Phoenix P. , Drapeau G. R. . ( 1988;). Cell division control in Escherichia coli K-12: some properties of the ftsZ84 mutation and suppression of this mutation by the product of a newly identified gene. . J Bacteriol 170: 4338–4342.[PubMed]
    [Google Scholar]
  43. Pichoff S. , Lutkenhaus J. . ( 2005;). Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. . Mol Microbiol 55: 1722–1734. [CrossRef] [PubMed]
    [Google Scholar]
  44. Powell B. S. , Court D. L. . ( 1998;). Control of ftsZ expression, cell division, and glutamine metabolism in Luria-Bertani medium by the alarmone ppGpp in Escherichia coli . . J Bacteriol 180: 1053–1062.[PubMed]
    [Google Scholar]
  45. Raskin D. M. , de Boer P. A. J. . ( 1999;). MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli . . J Bacteriol 181: 6419–6424.[PubMed]
    [Google Scholar]
  46. RayChaudhuri D. , Park J. T. . ( 1994;). A point mutation converts Escherichia coli FtsZ septation GTPase to an ATPase. . J Biol Chem 269: 22941–22944.[PubMed]
    [Google Scholar]
  47. Rueda S. , Vicente M. , Mingorance J. . ( 2003;). Concentration and assembly of the division ring proteins FtsZ, FtsA, and ZipA during the Escherichia coli cell cycle. . J Bacteriol 185: 3344–3351.[PubMed] [CrossRef]
    [Google Scholar]
  48. Schumacher M. A. , Zeng W. , Huang K. H. , Tchorzewski L. , Janakiraman A. . ( 2016;). Structural and functional analyses reveal insights into the molecular properties of the Escherichia coli Z ring stabilizing protein ZapC. . J Biol Chem 291: 2485–2498. [CrossRef] [PubMed]
    [Google Scholar]
  49. Shen B. , Lutkenhaus J. . ( 2009;). The conserved C-terminal tail of FtsZ is required for the septal localization and division inhibitory activity of MinC(C)/MinD. . Mol Microbiol 72: 410–424.[PubMed] [CrossRef]
    [Google Scholar]
  50. Wang X. D. , de Boer P. A. J. , Rothfield L. I. . ( 1991;). A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli . . EMBO J 10: 3363–3372.[PubMed]
    [Google Scholar]
  51. Ward J. E. , Lutkenhaus J. . ( 1985;). Overproduction of FtsZ induces minicell formation in E. coli . . Cell 42: 941–949.[PubMed] [CrossRef]
    [Google Scholar]
  52. Weart R. B. , Levin P. A. . ( 2003;). Growth rate-dependent regulation of medial FtsZ ring formation. . J Bacteriol 185: 2826–2834.[PubMed] [CrossRef]
    [Google Scholar]
  53. Weart R. B. , Nakano S. , Lane B. E. , Zuber P. , Levin P. A. . ( 2005;). The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. . Mol Microbiol 57: 238–249. [CrossRef] [PubMed]
    [Google Scholar]
  54. Wickner S. , Maurizi M. R. , Gottesman S. . ( 1999;). Posttranslational quality control: folding, refolding, and degrading proteins. . Science 286: 1888–1893.[PubMed] [CrossRef]
    [Google Scholar]
  55. Williams B. , Bhat N. , Chien P. , Shapiro L. . ( 2014;). ClpXP and ClpAP proteolytic activity on divisome substrates is differentially regulated following the Caulobacter asymmetric cell division. . Mol Microbiol 93: 853–866. [CrossRef] [PubMed]
    [Google Scholar]
  56. Yu X. C. , Margolin W. . ( 2000;). Deletion of the min operon results in increased thermosensitivity of an ftsZ84 mutant and abnormal FtsZ ring assembly, placement, and disassembly. . J Bacteriol 182: 6203–6213.[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000278
Loading
/content/journal/micro/10.1099/mic.0.000278
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error