1887

Abstract

Among multiple interconnected pathways for -Lysine catabolism in pseudomonads, it has been reported that PAO1 employs the decarboxylase and the transaminase pathways. However, up until now, knowledge of several genes involved in operation and regulation of these pathways was still missing. Transcriptome analyses coupled with promoter activity measurements and growth phenotype analyses led us to identify new members in -Lys and -Lys catabolism and regulation, including for glutarate utilization, , and PA2035 for -Lys catabolism, for putative -Lys efflux and for putative -Lys uptake. The operon encodes an acyl-CoA transferase () and glutaryl-CoA dehydrogenase () and is under the control of the transcriptional activator GcdR. Growth on -Lys was enhanced in the mutants of and , supporting the operation of -Lys efflux. The transcriptional activator LysR is responsible for -Lys specific induction of and the PA4181-82 operon of unknown function. The putative operator sites of GcdR and LysR were deduced from serial deletions and comparative genomic sequence analyses, and the formation of nucleoprotein complexes was demonstrated with purified His-tagged GcdR and LysR. The operon encodes two enzymes to convert pipecolate to 2-aminoadipate. Induction of the operon by -Lys, -Lys and pipecolate requires a functional AmaR, supporting convergence of Lys catabolic pathways to pipecolate. Growth on pipecolate was retarded in the and mutants, suggesting the importance of glutarate in pipecolate and 2-aminoadipate utilization. Furthermore, this study indicated links in the control of interconnected networks of lysine and arginine catabolism in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000277
2016-05-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/5/876.html?itemId=/content/journal/micro/10.1099/mic.0.000277&mimeType=html&fmt=ahah

References

  1. Chou H. T., Kwon D. H., Hegazy M., Lu C. D.. 2008; Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol190:1966–1975 [CrossRef][PubMed]
    [Google Scholar]
  2. Chou H. T., Hegazy M., Lu C. D.. 2010; l-lysine catabolism is controlled by l-arginine and ArgR in Pseudomonas aeruginosa PAO1. J Bacteriol192:5874–5880 [CrossRef][PubMed]
    [Google Scholar]
  3. Chou H. T., Li J. Y., Peng Y. C., Lu C. D.. 2013; Molecular characterization of PauR and its role in control of putrescine and cadaverine catabolism through the γ-glutamylation pathway in Pseudomonas aeruginosa PAO1. J Bacteriol195:3906–3913 [CrossRef][PubMed]
    [Google Scholar]
  4. Farinha M. A., Kropinski A. M.. 1990; Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol172:3496–3499[PubMed]
    [Google Scholar]
  5. Fothergill J. C., Guest J. R.. 1977; Catabolism of l-lysine by Pseudomonas aeruginosa. J Gen Microbiol99:139–155 [CrossRef][PubMed]
    [Google Scholar]
  6. Gallegos M. T., Schleif R., Bairoch A., Hofmann K., Ramos J. L.. 1997; Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev61:393–410[PubMed]
    [Google Scholar]
  7. Haas D., Holloway B. W., Schamböck A., Leisinger T.. 1977; The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet154:7–22 [CrossRef][PubMed]
    [Google Scholar]
  8. Jacobs M. A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C., other authors. 2003; Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A100:14339–14344 [CrossRef][PubMed]
    [Google Scholar]
  9. Kruger N. J.. 1994; The Bradford method for protein quantitation. Methods Mol Biol32:9–15[PubMed]
    [Google Scholar]
  10. Li C., Lu C. D.. 2009a; Arginine racemization by coupled catabolic and anabolic dehydrogenases. Proc Natl Acad Sci U S A106:906–911 [CrossRef][PubMed]
    [Google Scholar]
  11. Li C., Lu C. D.. 2009b; Unconventional integration of the bla gene from plasmid pIT2 during ISlacZ/hah transposon mutagenesis in Pseudomonas aeruginosa PAO1. Curr Microbiol58:472–477 [CrossRef][PubMed]
    [Google Scholar]
  12. Li C., Yao X., Lu C. D.. 2010; Regulation of the dauBAR operon and characterization of d-amino acid dehydrogenase DauA in arginine and lysine catabolism of Pseudomonas aeruginosa PAO1. Microbiology156:60–71 [CrossRef][PubMed]
    [Google Scholar]
  13. Lu C. D., Yang Z., Li W.. 2004; Transcriptome analysis of the ArgR regulon in Pseudomonas aeruginosa. J Bacteriol186:3855–3861 [CrossRef][PubMed]
    [Google Scholar]
  14. Muramatsu H., Mihara H., Kakutani R., Yasuda M., Ueda M., Kurihara T., Esaki N.. 2005; The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent Δ1-piperideine-2-carboxylate/Δ1-pyrroline-2-carboxylate reductase involved in the catabolism of d-lysine and d-proline. J Biol Chem280:5329–5335 [CrossRef][PubMed]
    [Google Scholar]
  15. Nandineni M. R., Gowrishankar J.. 2004; Evidence for an arginine exporter encoded by yggA (argO) that is regulated by the LysR-type transcriptional regulator ArgP in Escherichia coli. J Bacteriol186:3539–3546 [CrossRef][PubMed]
    [Google Scholar]
  16. Numa S., Ishimura Y., Nakazawa T., Okazaki T., Hayaishi O.. 1964; Enzymic studies on the metabolism of glutarate in Pseudomonas. J Biol Chem239:3915–3926[PubMed]
    [Google Scholar]
  17. Pathania A., Sardesai A. A.. 2015; Distinct paths for basic amino acid export in Escherichia coli: YbjE (LysO) mediates export of l-lysine. J Bacteriol197:2036–2047 [CrossRef][PubMed]
    [Google Scholar]
  18. Perfetti R., Campbell R. J., Titus J., Hartline R. A.. 1972; Catabolism of pipecolate to glutamate in Pseudomonas putida. J Biol Chem247:4089–4095[PubMed]
    [Google Scholar]
  19. Radkov A. D., Moe L. A.. 2013; Amino acid racemization in Pseudomonas putida KT2440. J Bacteriol195:5016–5024 [CrossRef][PubMed]
    [Google Scholar]
  20. Revelles O., Espinosa-Urgel M., Molin S., Ramos J. L.. 2004; The davDT operon of Pseudomonas putida, involved in lysine catabolism, is induced in response to the pathway intermediate Δ-aminovaleric acid. J Bacteriol186:3439–3446 [CrossRef][PubMed]
    [Google Scholar]
  21. Revelles O., Espinosa-Urgel M., Fuhrer T., Sauer U., Ramos J. L.. 2005; Multiple and interconnected pathways for l-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol187:7500–7510 [CrossRef][PubMed]
    [Google Scholar]
  22. Revelles O., Wittich R. M., Ramos J. L.. 2007; Identification of the initial steps in d-lysine catabolism in Pseudomonas putida. J Bacteriol189:2787–2792 [CrossRef][PubMed]
    [Google Scholar]
  23. Thöny B., Hwang D. S., Fradkin L., Kornberg A.. 1991; iciA, an Escherichia coli gene encoding a specific inhibitor of chromosomal initiation of replication in vitro. Proc Natl Acad Sci U S A88:4066–4070 [CrossRef][PubMed]
    [Google Scholar]
  24. Wargo M. J., Hogan D. A.. 2009; Identification of genes required for Pseudomonas aeruginosa carnitine catabolism. Microbiology155:2411–2419 [CrossRef][PubMed]
    [Google Scholar]
  25. Yang Z., Lu C. D.. 2007a; Characterization of an arginine: pyruvate transaminase in arginine catabolism of Pseudomonas aeruginosa PAO1. J Bacteriol189:3954–3959 [CrossRef][PubMed]
    [Google Scholar]
  26. Yang Z., Lu C. D.. 2007b; Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa. J Bacteriol189:3945–3953 [CrossRef][PubMed]
    [Google Scholar]
  27. Yao X., He W., Lu C. D.. 2011; Functional characterization of seven γ-glutamylpolyamine synthetase genes and the bauRABCD locus for polyamine and β-alanine utilization in Pseudomonas aeruginosa PAO1. J Bacteriol193:3923–3930 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000277
Loading
/content/journal/micro/10.1099/mic.0.000277
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error