1887

Abstract

The Hap complex of the methylotrophic yeast was found to be required for methanol-regulated gene expression. In this study, we performed functional characterization of CbHap3p, one of the Hap complex components in . Sequence alignment of Hap3 proteins revealed the presence of a unique extended C-terminal region, which is not present in Hap3p from (ScHap3p), but is found in Hap3p proteins of methylotrophic yeasts. Deletion of the C-terminal region of CbHap3p (Δ256–292 or Δ107–237) diminished activation of methanol-regulated genes and abolished the ability to grow on methanol, but did not affect nuclear localization or DNA-binding ability. However, deletion of the N-terminal region of CbHap3p (Δ1–20) led to not only a growth defect on methanol and a decreased level of methanol-regulated gene expression, but also impaired nuclear localization and binding to methanol-regulated gene promoters. We also revealed that CbHap3p could complement the growth defect of the Δ strain on glycerol, although ScHap3p could not complement the growth defect of a Δ strain on methanol. We conclude that the unique C-terminal region of CbHap3p contributes to maximum activation of methanol-regulated genes, whilst the N-terminal region is required for nuclear localization and binding to DNA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000275
2016-05-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/5/898.html?itemId=/content/journal/micro/10.1099/mic.0.000275&mimeType=html&fmt=ahah

References

  1. Baxevanis A. D. , Arents G. , Moudrianakis E. N. , Landsman D. . ( 1995;). A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic Acids Res 23: 2685–2691 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bourgarel D. , Nguyen C. C. , Bolotin-Fukuhara M. . ( 1999;). HAP4, the glucose-repressed regulated subunit of the HAP transcriptional complex involved in the fermentation-respiration shift, has a functional homologue in the respiratory yeast Kluyveromyces lactis . Mol Microbiol 31: 1205–1215 [CrossRef] [PubMed].
    [Google Scholar]
  3. Brachmann C. B. , Davies A. , Cost G. J. , Caputo E. , Li J. , Hieter P. , Boeke J. D. . ( 1998;). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115–132 [CrossRef] [PubMed].
    [Google Scholar]
  4. Buschlen S. , Amillet J. M. , Guiard B. , Fournier A. , Marcireau C. , Bolotin-Fukuhara M. . ( 2003;). The S. cerevisiae HAP complex, a key regulator of mitochondrial function, coordinates nuclear and mitochondrial gene expression. Comp Funct Genomics 4: 37–46 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chodosh L. A. , Olesen J. , Hahn S. , Baldwin A. S. , Guarente L. , Sharp P. A. . ( 1988;). A yeast and a human CCAAT-binding protein have heterologous subunits that are functionally interchangeable. Cell 53: 25–35 [CrossRef] [PubMed].
    [Google Scholar]
  6. Daly R. , Hearn M. T. . ( 2005;). Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18: 119–138 [CrossRef] [PubMed].
    [Google Scholar]
  7. Forsburg S. L. , Guarente L. . ( 1989;). Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev 3: 1166–1178 [CrossRef] [PubMed].
    [Google Scholar]
  8. Gellissen G. . ( 2000;). Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54: 741–750 [CrossRef] [PubMed].
    [Google Scholar]
  9. Hartner F. S. , Glieder A. . ( 2006;). Regulation of methanol utilisation pathway genes in yeasts. Microb Cell Fact 5: 39 [CrossRef] [PubMed].
    [Google Scholar]
  10. Ito H. , Fukuda Y. , Murata K. , Kimura A. . ( 1983;). Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153: 163–168 [PubMed].
    [Google Scholar]
  11. McNabb D. S. , Pinto I. . ( 2005;). Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae . Eukaryot Cell 4: 1829–1839 [CrossRef] [PubMed].
    [Google Scholar]
  12. McNabb D. S. , Tseng K. A. , Guarente L. . ( 1997;). The Saccharomyces cerevisiae Hap5p homolog from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT-binding factor. Mol Cell Biol 17: 7008–7018 [CrossRef] [PubMed].
    [Google Scholar]
  13. Oda S. , Yurimoto H. , Nitta N. , Sasano Y. , Sakai Y. . ( 2015;). Molecular characterization of hap complex components responsible for methanol-inducible gene expression in the methylotrophic yeast Candida boidinii . Eukaryot Cell 14: 278–285 [CrossRef] [PubMed].
    [Google Scholar]
  14. Ramil E. , Agrimonti C. , Shechter E. , Gervais M. , Guiard B. . ( 2000;). Regulation of the CYB2 gene expression: transcriptional co-ordination by the Hap1p, Hap2/3/4/5p and Adr1p transcription factors. Mol Microbiol 37: 1116–1132 [CrossRef] [PubMed].
    [Google Scholar]
  15. Ridenour J. B. , Bluhm B. H. . ( 2014;). The HAP complex in Fusarium verticillioides is a key regulator of growth, morphogenesis, secondary metabolism, and pathogenesis. Fungal Genet Biol 69: 52–64 [CrossRef] [PubMed].
    [Google Scholar]
  16. Romier C. , Cocchiarella F. , Mantovani R. , Moras D. . ( 2003;). The NF-YB/NF-YC structure gives insight into DNA binding and transcription regulation by CCAAT factor NF-Y. J Biol Chem 278: 1336–1345 [CrossRef] [PubMed].
    [Google Scholar]
  17. Sakai Y. , Kazarimoto T. , Tani Y. . ( 1991;). Transformation system for an asporogenous methylotrophic yeast, Candida boidinii: cloning of the orotidine-5′-phosphate decarboxylase gene (URA3), isolation of uracil auxotrophic mutants, and use of the mutants for integrative transformation. J Bacteriol 173: 7458–7463 [PubMed].
    [Google Scholar]
  18. Sakai Y. , Akiyama M. , Kondoh H. , Shibano Y. , Kato N. . ( 1996;). High-level secretion of fungal glucoamylase using the Candida boidinii gene expression system. Biochim Biophys Acta 1308: 81–87.[CrossRef]
    [Google Scholar]
  19. Sasano Y. , Yurimoto H. , Yanaka M. , Sakai Y. . ( 2008;). Trm1p, a Zn(II)2Cys6-type transcription factor, is a master regulator of methanol-specific gene activation in the methylotrophic yeast Candida boidinii . Eukaryot Cell 7: 527–536 [CrossRef] [PubMed].
    [Google Scholar]
  20. Sasano Y. , Yurimoto H. , Kuriyama M. , Sakai Y. . ( 2010;). Trm2p-dependent derepression is essential for methanol-specific gene activation in the methylotrophic yeast Candida boidinii . FEMS Yeast Res 10: 535–544 [PubMed].
    [Google Scholar]
  21. Singh R. P. , Prasad H. K. , Sinha I. , Agarwal N. , Natarajan K. . ( 2011;). Cap2-HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans . J Biol Chem 286: 25154–25170 [CrossRef] [PubMed].
    [Google Scholar]
  22. Sybirna K. , Guiard B. , Li Y. F. , Bao W. G. , Bolotin-Fukuhara M. , Delahodde A. . ( 2005;). A new Hansenula polymorpha HAP4 homologue which contains only the N-terminal conserved domain of the protein is fully functional in Saccharomyces cerevisiae . Curr Genet 47: 172–181 [CrossRef] [PubMed].
    [Google Scholar]
  23. Sybirna K. , Petryk N. , Zhou Y. F. , Sibirny A. , Bolotin-Fukuhara M. . ( 2010;). A novel Hansenula polymorpha transcriptional factor HpHAP4-B, able to functionally replace the S. cerevisiae HAP4 gene, contains an additional bZip motif. Yeast 27: 941–954 [CrossRef] [PubMed].
    [Google Scholar]
  24. Tani Y. , Sakai Y. , Yamada H. . ( 1985;). Isolation and characterization of a mutant of a methanol yeast, Candida boidinii S2, with higher formaldehyde productivity. Agric Biol Chem 49: 2699–2706 [CrossRef].
    [Google Scholar]
  25. Tanoue S. , Kamei K. , Goda H. , Tanaka A. , Kobayashi T. , Tsukagoshi N. , Kato M. . ( 2006;). The region in a subunit of the Aspergillus CCAAT-binding protein similar to the HAP4p-recruiting domain of Saccharomyces cerevisiae Hap5p is not essential for transcriptional enhancement. Biosci Biotechnol Biochem 70: 782–787 [CrossRef] [PubMed].
    [Google Scholar]
  26. Vogl T. , Glieder A. . ( 2013;). Regulation of Pichia pastoris promoters and its consequences for protein production. N Biotechnol 30: 385–404 [CrossRef] [PubMed].
    [Google Scholar]
  27. Wach A. . ( 1996;). PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae . Yeast 12: 259–265 [CrossRef] [PubMed].
    [Google Scholar]
  28. Xing Y. , Fikes J. D. , Guarente L. . ( 1993;). Mutations in yeast HAP2/HAP3 define a hybrid CCAAT box binding domain. EMBO J 12: 4647–4655 [PubMed].
    [Google Scholar]
  29. Yurimoto H. . ( 2009;). Molecular basis of methanol-inducible gene expression and its application in the methylotrophic yeast Candida boidinii . Biosci Biotechnol Biochem 73: 793–800 [CrossRef] [PubMed].
    [Google Scholar]
  30. Yurimoto H. , Oku M. , Sakai Y. . ( 2011;). Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis. Int J Microbiol 2011: 101298 [CrossRef] [PubMed].
    [Google Scholar]
  31. Zhai Z. , Yurimoto H. , Sakai Y. . ( 2012;). Molecular characterization of Candida boidinii MIG1 and its role in the regulation of methanol-inducible gene expression. Yeast 29: 293–301 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000275
Loading
/content/journal/micro/10.1099/mic.0.000275
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error