1887

Abstract

( colonization factor) is one of the 12 putative chaperone/usher fimbrial clusters present in the serovar genome. We investigated the production, expression and regulation of as well as its role during interaction with human cells. The gene cluster was cloned and induced in and , and the production of intertwined fibres similar to the Cbl (cable) pili of was observed on the bacterial surface by electron microscopy. In , was expressed more after growth in M63 minimal medium than in standard Luria–Bertani medium. Analysis of the promoter region identified putative binding sites for the global regulators RcsB, ArgR and Fur. The expression of was measured in isogenic strains lacking these global regulators. Under the conditions tested, the results showed that expression was higher in the mutant and was regulated by iron concentration. Fur may regulate these fimbriae indirectly via the small RNAs RyhB1 and RyhB2. An isogenic mutant harbouring a deletion of the cluster did not demonstrate any defect in adhesion or invasion of human epithelial cells, or in phagocytosis or survival in macrophages, when compared to the WT serovar strain. However, the cluster contributed to adherence to human epithelial cells when introduced into . Thus, genes encode functional fimbriae that can act as an adhesin and may contribute to colonization during typhoid fever.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000270
2016-05-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/5/777.html?itemId=/content/journal/micro/10.1099/mic.0.000270&mimeType=html&fmt=ahah

References

  1. Anantha R. P., McVeigh A. L., Lee L. H., Agnew M. K., Cassels F. J., Scott D. A., Whittam T. S., Savarino S. J.. 2004; Evolutionary and functional relationships of colonization factor antigen I and other class 5 adhesive fimbriae of enterotoxigenic Escherichia coli . Infect Immun72:7190–7201 [CrossRef][PubMed]
    [Google Scholar]
  2. Bishop A., House D., Perkins T., Baker S., Kingsley R. A., Dougan G.. 2008; Interaction of Salmonella enterica serovar Typhi with cultured epithelial cells: roles of surface structures in adhesion and invasion. Microbiology154:1914–1926 [CrossRef][PubMed]
    [Google Scholar]
  3. Bronowski C., Winstanley C.. 2009; Identification and distribution of accessory genome DNA sequences from an invasive African isolate of Salmonella Heidelberg. FEMS Microbiol Lett298:29–36[CrossRef]
    [Google Scholar]
  4. Clegg S., Wilson J., Johnson J.. 2011; More than one way to control hair growth: regulatory mechanisms in enterobacteria that affect fimbriae assembled by the chaperone/usher pathway. J Bacteriol193:2081–2088 [CrossRef][PubMed]
    [Google Scholar]
  5. Corcoran C. P., Dorman C. J.. 2009; DNA relaxation-dependent phase biasing of the fim genetic switch in Escherichia coli depends on the interplay of H-NS, IHF and LRP. Mol Microbiol74:1071–1082 [CrossRef][PubMed]
    [Google Scholar]
  6. Daigle F., Graham J. E., Curtiss R., III. 2001; Identification of Salmonella typhi genes expressed within macrophages by selective capture of transcribed sequences (SCOTS). Mol Microbiol41:1211–1222 [CrossRef][PubMed]
    [Google Scholar]
  7. den Bakker H. C., Moreno Switt A. I., Govoni G., Cummings C. A., Ranieri M. L., Degoricija L., Hoelzer K., Rodriguez-Rivera L. D., Brown S., Bolchacova E.. et al. 2011; Genome sequencing reveals diversification of virulence factor content and possible host adaptation in distinct subpopulations of Salmonella enterica . BMC Genomics12:425[CrossRef]
    [Google Scholar]
  8. Edwards R. A., Schifferli D. M., Maloy S. R.. 2000; A role for Salmonella fimbriae in intraperitoneal infections. Proc Natl Acad Sci U S A97:1258–1262 [CrossRef][PubMed]
    [Google Scholar]
  9. Escolar L., Pérez-Martín J., de Lorenzo V.. 1999; Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol181:6223–6229[PubMed]
    [Google Scholar]
  10. Faucher S. P., Forest C., Béland M., Daigle F.. 2009; A novel PhoP-regulated locus encoding the cytolysin ClyA and the secreted invasin TaiA of Salmonella enterica serovar Typhi is involved in virulence. Microbiology155:477–488 [CrossRef][PubMed]
    [Google Scholar]
  11. Folkesson A., Advani A., Sukupolvi S., Pfeifer J. D., Normark S., Löfdahl S.. 1999; Multiple insertions of fimbrial operons correlate with the evolution of Salmonella serovars responsible for human disease. Mol Microbiol33:612–622 [CrossRef][PubMed]
    [Google Scholar]
  12. Forest C. G., Daigle F.. 2012; Molecular armory of S. Typhi: deciphering the putative arsenal of our enemy. In Salmonella –. Distribution, Adaptation, Control Measures and Molecular Technologies pp405–428 Edited by Annous B. A., Gurtler J.. Rijeka: InTech;
    [Google Scholar]
  13. Forest C., Faucher S. P., Poirier K., Houle S., Dozois C. M., Daigle F.. 2007; Contribution of the stg fimbrial operon of Salmonella enterica serovar Typhi during interaction with human cells. Infect Immun75:5264–5271 [CrossRef][PubMed]
    [Google Scholar]
  14. Harris J. B., Baresch-Bernal A., Rollins S. M., Alam A., LaRocque R. C., Bikowski M., Peppercorn A. F., Handfield M., Hillman J. D., other authors. 2006; Identification of in vivo-induced bacterial protein antigens during human infection with Salmonella enterica serovar Typhi . Infect Immun74:5161–5168 [CrossRef][PubMed]
    [Google Scholar]
  15. Humphries A. D., Raffatellu M., Winter S., Weening E. H., Kingsley R. A., Droleskey R., Zhang S., Figueiredo J., Khare S., other authors. 2003; The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol Microbiol48:1357–1376 [CrossRef][PubMed]
    [Google Scholar]
  16. Kaniga K., Delor I., Cornelis G. R.. 1991; A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica . Gene109:137–141 [CrossRef][PubMed]
    [Google Scholar]
  17. Kaniga K., Compton M. S., Curtiss R., III, Sundaram P.. 1998; Molecular and functional characterization of Salmonella enterica serovar typhimurium poxA gene: effect on attenuation of virulence and protection. Infect Immun66:5599–5606[PubMed]
    [Google Scholar]
  18. Karjalainen T. K., Evans D. G., Evans D.J., Jr, Graham D. Y., Lee C. H.. 1991; Iron represses the expression of CFA/I fimbriae of enterotoxigenic E. coli . Microb Pathog11:317–323 [CrossRef][PubMed]
    [Google Scholar]
  19. Klumpp J., Fuchs T. M.. 2007; Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiology153:1207–1220 [CrossRef][PubMed]
    [Google Scholar]
  20. Korea C. G., Badouraly R., Prevost M. C., Ghigo J. M., Beloin C.. 2010; Escherichia coli K-12 possesses multiple cryptic but functional chaperone-usher fimbriae with distinct surface specificities. Environ Microbiol12:1957–1977 [CrossRef][PubMed]
    [Google Scholar]
  21. Lawley T. D., Chan K., Thompson L. J., Kim C. C., Govoni G. R., Monack D. M.. 2006; Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog2:e11 [CrossRef][PubMed]
    [Google Scholar]
  22. Leclerc J. M., Dozois C. M., Daigle F.. 2013; Role of the Salmonella enterica serovar Typhi Fur regulator and small RNAs RfrA and RfrB in iron homeostasis and interaction with host cells. Microbiology159:591–602 [CrossRef][PubMed]
    [Google Scholar]
  23. Lee F. K., Morris C., Hackett J.. 2006; The Salmonella enterica serovar Typhi Vi capsule and self-association pili share controls on expression. FEMS Microbiol Lett261:41–46 [CrossRef][PubMed]
    [Google Scholar]
  24. Lehti T. A., Heikkinen J., Korhonen T. K., Westerlund-Wikström B.. 2012; The response regulator RcsB activates expression of Mat fimbriae in meningitic Escherichia coli . J Bacteriol194:3475–3485 [CrossRef][PubMed]
    [Google Scholar]
  25. Low A. S., Holden N., Rosser T., Roe A. J., Constantinidou C., Hobman J. L., Smith D. G., Low J. C., Gally D. L.. 2006; Analysis of fimbrial gene clusters and their expression in enterohaemorrhagic Escherichia coli O157:H7. Environ Microbiol8:1033–1047 [CrossRef][PubMed]
    [Google Scholar]
  26. Massé E., Gottesman S.. 2002; A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli . Proc Natl Acad Sci U S A99:4620–4625 [CrossRef][PubMed]
    [Google Scholar]
  27. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor Laboratory, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  28. Morales V. M., Bäckman A., Bagdasarian M.. 1991; A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene97:39–47 [CrossRef][PubMed]
    [Google Scholar]
  29. Müller C. M., Dobrindt U., Nagy G., Emödy L., Uhlin B. E., Hacker J.. 2006; Role of histone-like proteins H-NS and StpA in expression of virulence determinants of uropathogenic Escherichia coli . J Bacteriol188:5428–5438 [CrossRef][PubMed]
    [Google Scholar]
  30. Murphree D., Froehlich B., Scott J. R.. 1997; Transcriptional control of genes encoding CS1 pili: negative regulation by a silencer and positive regulation by Rns. J Bacteriol179:5736–5743[PubMed]
    [Google Scholar]
  31. Neidhardt F. C., Curtiss Iii R., Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E.. (editors) 1996; Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Nicholson B., Low D.. 2000; DNA methylation-dependent regulation of pef expression in Salmonella typhimurium . Mol Microbiol35:728–742 [CrossRef][PubMed]
    [Google Scholar]
  33. Nuccio S. P., Bäumler A. J.. 2007; Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev71:551–575 [CrossRef][PubMed]
    [Google Scholar]
  34. O'Callaghan D., Charbit A.. 1990; High efficiency transformation of Salmonella typhimurium and Salmonella typhi by electroporation. Mol Gen Genet223:156–158 [CrossRef][PubMed]
    [Google Scholar]
  35. Parkhill J., Dougan G., James K. D., Thomson N. R., Pickard D., Wain J., Churcher C., Mungall K. L., Bentley S. D., other authors. 2001; Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature413:848–852 [CrossRef][PubMed]
    [Google Scholar]
  36. Paul S., Summers D.. 2004; ArgR and PepA, accessory proteins for XerCD-mediated resolution of ColE1 dimers, are also required for stable maintenance of the P1 prophage. Plasmid52:63–68 [CrossRef][PubMed]
    [Google Scholar]
  37. Rank D. L., Saeed M. A., Muriana P. M.. 2009; Cloning of Salmonella enterica serovar Enteritidis fimbrial protein SefA as a surface protein in Escherichia coli confers the ability to attach to eukaryotic cell lines. Appl Environ Microbiol75:6622–6625 [CrossRef][PubMed]
    [Google Scholar]
  38. Sajjan U. S., Sun L., Goldstein R., Forstner J. F.. 1995; Cable (cbl) type II pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia: nucleotide sequence of the cblA major subunit pilin gene and novel morphology of the assembled appendage fibers. J Bacteriol177:1030–1038[PubMed]
    [Google Scholar]
  39. Simons R. W., Houman F., Kleckner N.. 1987; Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene53:85–96 [CrossRef][PubMed]
    [Google Scholar]
  40. Suez J., Porwollik S., Dagan A., Marzel A., Schorr Y. I., Desai P. T., Agmon V., Mcclelland M., Rahav G., Gal-Mor O.. 2013; Virulence gene profiling and pathogenicity characterization of non-typhoidal Salmonella accounted for invasive disease in humans. PLoS One8:e58449[CrossRef]
    [Google Scholar]
  41. Tomich M., Mohr C. D.. 2004; Transcriptional and posttranscriptional control of cable pilus gene expression in Burkholderia cenocepacia . J Bacteriol186:1009–1020 [CrossRef][PubMed]
    [Google Scholar]
  42. Torres A. G., López-Sánchez G. N., Milflores-Flores L., Patel S. D., Rojas-López M., Martínez de la Peña C. F., Arenas-Hernández M. M., Martínez-Laguna Y.. 2007; Ler and H-NS, regulators controlling expression of the long polar fimbriae of Escherichia coli O157:H7. J Bacteriol189:5916–5928 [CrossRef][PubMed]
    [Google Scholar]
  43. Townsend S. M., Kramer N. E., Edwards R., Baker S., Hamlin N., Simmonds M., Stevens K., Maloy S., Parkhill J., other authors. 2001; Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun69:2894–2901 [CrossRef][PubMed]
    [Google Scholar]
  44. van der Velden A. W., Bäumler A. J., Tsolis R. M., Heffron F.. 1998; Multiple fimbrial adhesins are required for full virulence of Salmonella typhimurium in mice. Infect Immun66:2803–2808[PubMed]
    [Google Scholar]
  45. Virji M.. 2009; Ins and outs of microbial adhesion. Top Curr Chem288:139–156[CrossRef]
    [Google Scholar]
  46. Wang R. F., Kushner S. R.. 1991; Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli . Gene100:195–199 [CrossRef][PubMed]
    [Google Scholar]
  47. White-Ziegler C. A., Villapakkam A., Ronaszeki K., Young S.. 2000; H-NS controls pap and daa fimbrial transcription in Escherichia coli in response to multiple environmental cues. J Bacteriol182:6391–6400 [CrossRef][PubMed]
    [Google Scholar]
  48. Woodall L. D., Russell P. W., Harris S. L., Orndorff P. E.. 1993; Rapid, synchronous, and stable induction of type 1 piliation in Escherichia coli by using a chromosomal lacUV5 promoter. J Bacteriol175:2770–2778[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000270
Loading
/content/journal/micro/10.1099/mic.0.000270
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error