1887

Abstract

This work reports the evolutionary relationships, amplified expression, functional characterization and purification of the putative allantoin transport protein, PucI, from . Sequence alignments and phylogenetic analysis confirmed close evolutionary relationships between PucI and membrane proteins of the nucleobase-cation-symport-1 family of secondary active transporters. These include the sodium-coupled hydantoin transport protein, Mhp1, from , and related proteins from bacteria, fungi and plants. Membrane topology predictions for PucI were consistent with 12 putative transmembrane-spanning α-helices with both N- and C-terminal ends at the cytoplasmic side of the membrane. The gene was cloned into the IPTG-inducible plasmid pTTQ18 upstream from an in-frame hexahistidine tag and conditions determined for optimal amplified expression of the PucI(His) protein in to a level of about 5 % in inner membranes. Initial rates of inducible PucI-mediated uptake of C-allantoin into energized whole cells conformed to Michaelis–Menten kinetics with an apparent affinity ( app) of 24 ± 3 μM, therefore confirming that PucI is a medium-affinity transporter of allantoin. Dependence of allantoin transport on sodium was not apparent. Competitive uptake experiments showed that PucI recognizes some additional hydantoin compounds, including hydantoin itself, and to a lesser extent a range of nucleobases and nucleosides. PucI(His) was solubilized from inner membranes using n-dodecyl-β--maltoside and purified. The isolated protein contained a substantial proportion of α-helix secondary structure, consistent with the predictions, and a 3D model was therefore constructed on a template of the Mhp1 structure, which aided localization of the potential ligand binding site in PucI.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000266
2016-05-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/5/823.html?itemId=/content/journal/micro/10.1099/mic.0.000266&mimeType=html&fmt=ahah

References

  1. Adelman J. L. , Dale A. L. , Zwier M. C. , Bhatt D. , Chong L. T. , Zuckerman D. M. , Grabe M. . ( 2011;). Simulations of the alternating access mechanism of the sodium symporter Mhp1. Biophys J 101: 2399–2407 [CrossRef] [PubMed].
    [Google Scholar]
  2. Arora R. , Papaioannou V. E. . ( 2012;). The murine allantois: a model system for the study of blood vessel formation. Blood 120: 2562–2572 [CrossRef] [PubMed].
    [Google Scholar]
  3. Beier L. , Nygaard P. , Jarmer H. , Saxild H. H. . ( 2002;). Transcription analysis of the Bacillus subtilis PucR regulon and identification of a cis-acting sequence required for PucR-regulated expression of genes involved in purine catabolism. J Bacteriol 184: 3232–3241 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bernsel A. , Viklund H. , Hennerdal A. , Elofsson A. . ( 2009;). TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37: W465–W468 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bettaney K. E. , Sukumar P. , Hussain R. , Siligardi G. , Henderson P. J. , Patching S. G. . ( 2013;). A systematic approach to the amplified expression, functional characterization and purification of inositol transporters from Bacillus subtilis . Mol Membr Biol 30: 3–14 [CrossRef] [PubMed].
    [Google Scholar]
  6. Biasini M. , Bienert S. , Waterhouse A. , Arnold K. , Studer G. , Schmidt T. , Kiefer F. , Gallo Cassarino T. , Bertoni M. , other authors . ( 2014;). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42: W252–W258 [CrossRef] [PubMed].
    [Google Scholar]
  7. Christiansen L. C. , Schou S. , Nygaard P. , Saxild H. H. . ( 1997;). Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. J Bacteriol 179: 2540–2550 [PubMed].
    [Google Scholar]
  8. Cruz-Ramos H. , Glaser P. , Wray L. V. Jr. , Fisher S. H. . ( 1997;). The Bacillus subtilis ureABC operon. J Bacteriol 179: 3371–3373 [PubMed].
    [Google Scholar]
  9. Danielsen S. , Boyd D. , Neuhard J. . ( 1995;). Membrane topology analysis of the Escherichia coli cytosine permease. Microbiology 141: 2905–2913 [CrossRef] [PubMed].
    [Google Scholar]
  10. de Koning H. , Diallinas G. . ( 2000;). Nucleobase transporters. Mol Membr Biol 17: 75–94 [CrossRef] [PubMed].
    [Google Scholar]
  11. Emsley P. , Cowtan K. . ( 2004;). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132 [CrossRef] [PubMed].
    [Google Scholar]
  12. Findlay H. E. , Rutherford N. G. , Henderson P. J. , Booth P. J. . ( 2010;). Unfolding free energy of a two-domain transmembrane sugar transport protein. Proc Natl Acad Sci U S A 107: 18451–18456 [CrossRef] [PubMed].
    [Google Scholar]
  13. Fisher S. H. . ( 1993;). Utilization of amino acids and other nitrogen-containing compounds. . In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics, pp. 221–228. Edited by Sonenshein A. L. , Hoch J. A. , Losick R. . Washington, DC:: American Society for Microbiology; [CrossRef].
    [Google Scholar]
  14. Fisher S. H. . ( 1999;). Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence!. Mol Microbiol 32: 223–232 [CrossRef] [PubMed].
    [Google Scholar]
  15. Goelzer A. , Bekkal Brikci F. , Martin-Verstraete I. , Noirot P. , Bessières P. , Aymerich S. , Fromion V. . ( 2008;). Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis . BMC Syst Biol 2: 20 [CrossRef] [PubMed].
    [Google Scholar]
  16. Goudela S. , Karatza P. , Koukaki M. , Frillingos S. , Diallinas G. . ( 2005;). Comparative substrate recognition by bacterial and fungal purine transporters of the NAT/NCS2 family. Mol Membr Biol 22: 263–275 [CrossRef] [PubMed].
    [Google Scholar]
  17. Guex N. , Peitsch M. C. . ( 1997;). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723 [CrossRef] [PubMed].
    [Google Scholar]
  18. Hamari Z. , Amillis S. , Drevet C. , Apostolaki A. , Vágvölgyi C. , Diallinas G. , Scazzocchio C. . ( 2009;). Convergent evolution and orphan genes in the Fur4p-like family and characterization of a general nucleoside transporter in Aspergillus nidulans . Mol Microbiol 73: 43–57 [CrossRef] [PubMed].
    [Google Scholar]
  19. Henderson P. J. , Giddens R. A. , Jones-Mortimer M. C. . ( 1977;). Transport of galactose, glucose and their molecular analogues by Escherichia coli K12. Biochem J 162: 309–320.[CrossRef]
    [Google Scholar]
  20. Inman K. E. , Downs K. M. . ( 2007;). The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis 45: 237–258 [CrossRef] [PubMed].
    [Google Scholar]
  21. Jackson S. M. , Patching S. G. , Ivanova E. , Simmons K. J. , Weyand S. , Shimamura T. , Brueckner F. , Suzuki S. , Iwata S. , other authors . ( 2013;). Mhp1, the Na+-hydantoin membrane transport protein. . In Encyclopedia of Biophysics, pp. 1514–1521. Edited by Roberts G. C. K. . Berlin, Heidelberg:: Springer; [CrossRef].
    [Google Scholar]
  22. Johnson R. J. , Sautin Y. Y. , Oliver W. J. , Roncal C. , Mu W. , Sanchez-Lozada L. G. , Rodriguez-Iturbe B. , Nakagawa T. , Benner S. A. . ( 2009;). Lessons from comparative physiology: could uric acid represent a physiologic alarm signal gone awry in western society?. J Comp Physiol B 179: 67–76 [CrossRef] [PubMed].
    [Google Scholar]
  23. Kazmier K. , Sharma S. , Islam S. M. , Roux B. , Mchaourab H. S. . ( 2014;). Conformational cycle and ion-coupling mechanism of the Na+/hydantoin transporter Mhp1. Proc Natl Acad Sci U S A 111: 14752–14757 [CrossRef] [PubMed].
    [Google Scholar]
  24. Krogh A. , Larsson B. , von Heijne G. , Sonnhammer E. L. . ( 2001;). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567–580 [CrossRef] [PubMed].
    [Google Scholar]
  25. Krypotou E. , Evangelidis T. , Bobonis J. , Pittis A. A. , Gabaldón T. , Scazzocchio C. , Mikros E. , Diallinas G. . ( 2015;). Origin, diversification and substrate specificity in the family of NCS1/FUR transporters. Mol Microbiol 96: 927–950 [CrossRef] [PubMed].
    [Google Scholar]
  26. Laskowski R. A. , Swindells M. B. . ( 2011;). LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 51: 2778–2786 [CrossRef] [PubMed].
    [Google Scholar]
  27. Lovell S. C. , Davis I. W. , Arendall W.B., III , de Bakker P. I. , Word J. M. , Prisant M. G. , Richardson J. S. , Richardson D. C. . ( 2003;). Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins 50: 437–450 [CrossRef] [PubMed].
    [Google Scholar]
  28. Ma P. , Yuille H. M. , Blessie V. , Göhring N. , Iglói Z. , Nishiguchi K. , Nakayama J. , Henderson P. J. F. , Phillips-Jones M. K. . ( 2008;). Expression, purification and activities of the entire family of intact membrane sensor kinases from Enterococcus faecalis . Mol Membr Biol 25: 449–473 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ma P. , Varela F. , Magoch M. , Silva A. R. , Rosário A. L. , Brito J. , Oliveira T. F. , Nogly P. , Pessanha M. , other authors . ( 2013;). An efficient strategy for small-scale screening and production of archaeal membrane transport proteins in Escherichia coli . PLoS One 8: e76913 [CrossRef] [PubMed].
    [Google Scholar]
  30. Mourad G. S. , Tippmann-Crosby J. , Hunt K. A. , Gicheru Y. , Bade K. , Mansfield T. A. , Schultes N. P. . ( 2012;). Genetic and molecular characterization reveals a unique nucleobase cation symporter 1 in Arabidopsis . FEBS Lett 586: 1370–1378 [CrossRef] [PubMed].
    [Google Scholar]
  31. Nygaard P. , Saxild H. H. . ( 2005;). The purine efflux pump PbuE in Bacillus subtilis modulates expression of the PurR and G-box (XptR) regulons by adjusting the purine base pool size. J Bacteriol 187: 791–794 [CrossRef] [PubMed].
    [Google Scholar]
  32. Nygaard P. , Duckert P. , Saxild H. H. . ( 1996;). Role of adenine deaminase in purine salvage and nitrogen metabolism and characterization of the ade gene in Bacillus subtilis . J Bacteriol 178: 846–853 [PubMed].
    [Google Scholar]
  33. Nygaard P. , Bested S. M. , Andersen K. A. K. , Saxild H. H. . ( 2000;). Bacillus subtilis guanine deaminase is encoded by the yknA gene and is induced during growth with purines as the nitrogen source. Microbiology 146: 3061–3069 [CrossRef] [PubMed].
    [Google Scholar]
  34. Pantazopoulou A. , Diallinas G. . ( 2007;). Fungal nucleobase transporters. FEMS Microbiol Rev 31: 657–675 [CrossRef] [PubMed].
    [Google Scholar]
  35. Patching S. G. . ( 2009;). Synthesis of highly pure 14C-labelled DL-allantoin and 13C NMR analysis of labelling integrity. J Labelled Comp Radiopharm 52: 401–404 [CrossRef].
    [Google Scholar]
  36. Pizzichini M. , Pandolfi M. L. , Arezzini L. , Terzuoli L. , Fe L. , Bontemps F. , Van den Berghe G. , Marinello E. . ( 1996;). Labelling of uric acid and allantoin in different purine organs and urine of the rat. Life Sci 59: 893–899 [CrossRef] [PubMed].
    [Google Scholar]
  37. Rapp M. , Schein J. , Hunt K. A. , Nalam V. , Mourad G. S. , Schultes N. P. . ( 2016;). The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility. Protoplasma 253: 611–623 [PubMed].[CrossRef]
    [Google Scholar]
  38. Rath A. , Glibowicka M. , Nadeau V. G. , Chen G. , Deber C. M. . ( 2009;). Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A 106: 1760–1765 [CrossRef] [PubMed].
    [Google Scholar]
  39. Saidijam M. , Patching S. G. . ( 2015;). Amino acid composition analysis of secondary transport proteins from Escherichia coli with relation to functional classification, ligand specificity and structure. J Biomol Struct Dyn 33: 2205–2220 [CrossRef] [PubMed].
    [Google Scholar]
  40. Saidijam M. , Psakis G. , Clough J. L. , Meuller J. , Suzuki S. , Hoyle C. J. , Palmer S. L. , Morrison S. M. , Pos M. K. , other authors . ( 2003;). Collection and characterisation of bacterial membrane proteins. FEBS Lett 555: 170–175 [CrossRef] [PubMed].
    [Google Scholar]
  41. Saxild H. H. , Brunstedt K. , Nielsen K. I. , Jarmer H. , Nygaard P. . ( 2001;). Definition of the Bacillus subtilis PurR operator using genetic and bioinformatic tools and expansion of the PurR regulon with glyA, guaC, pbuG, xpt-pbuX, yqhZ-folD, and pbuO . J Bacteriol 183: 6175–6183 [CrossRef] [PubMed].
    [Google Scholar]
  42. Schein J. R. , Hunt K. A. , Minton J. A. , Schultes N. P. , Mourad G. S. . ( 2013;). The nucleobase cation symporter 1 of Chlamydomonas reinhardtii and that of the evolutionarily distant Arabidopsis thaliana display parallel function and establish a plant-specific solute transport profile. Plant Physiol Biochem 70: 52–60 [CrossRef] [PubMed].
    [Google Scholar]
  43. Schultz A. C. , Nygaard P. , Saxild H. H. . ( 2001;). Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator. J Bacteriol 183: 3293–3302 [CrossRef] [PubMed].
    [Google Scholar]
  44. Shi Y. . ( 2013;). Common folds and transport mechanisms of secondary active transporters. Annu Rev Biophys 42: 51–72 [CrossRef] [PubMed].
    [Google Scholar]
  45. Shimamura T. , Weyand S. , Beckstein O. , Rutherford N. G. , Hadden J. M. , Sharples D. , Sansom M. S. , Iwata S. , Henderson P. J. , Cameron A. D. . ( 2010;). Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 328: 470–473 [CrossRef] [PubMed].
    [Google Scholar]
  46. Sievers F. , Wilm A. , Dineen D. , Gibson T. A. , Karplus K. , Li W. , Lopez R. , McWilliam H. , Remmert M. , other authors . . ( 2011;). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7: 539.[CrossRef]
    [Google Scholar]
  47. Simmons K. J. , Jackson S. M. , Brueckner F. , Patching S. G. , Beckstein O. , Ivanova E. , Geng T. , Weyand S. , Drew D. , other authors . ( 2014;). Molecular mechanism of ligand recognition by membrane transport protein, Mhp1. EMBO J 33: 1831–1844 [CrossRef] [PubMed].
    [Google Scholar]
  48. Stark M. J. R. . ( 1987;). Multicopy expression vectors carrying the lac repressor gene for regulated high-level expression of genes in Escherichia coli . Gene 51: 255–267 [CrossRef] [PubMed].
    [Google Scholar]
  49. Suzuki S. , Henderson P. J. . ( 2006;). The hydantoin transport protein from Microbacterium liquefaciens . J Bacteriol 188: 3329–3336 [CrossRef] [PubMed].
    [Google Scholar]
  50. Szakonyi G. , Leng D. , Ma P. , Bettaney K. E. , Saidijam M. , Ward A. , Zibaei S. , Gardiner A. T. , Cogdell R. J. , other authors . ( 2007;). A genomic strategy for cloning, expressing and purifying efflux proteins of the major facilitator superfamily. J Antimicrob Chemother 59: 1265–1270 [CrossRef] [PubMed].
    [Google Scholar]
  51. von Heijne G. . ( 1992;). Membrane protein structure prediction: hydrophobicity analysis and the positive-inside rule. J Mol Biol 225: 487–494 [CrossRef] [PubMed].
    [Google Scholar]
  52. Ward A. , O'Reilly J. , Rutherford N. G. , Ferguson S. M. , Hoyle C. K. , Palmer S. L. , Clough J. L. , Venter H. , Xie H. , other authors . ( 1999;). Expression of prokaryotic membrane transport proteins in Escherichia coli . Biochem Soc Trans 27: 893–899 [CrossRef] [PubMed].
    [Google Scholar]
  53. Ward A. , Sanderson N. M. , O'Reilly J. , Rutherford N. G. , Poolman B. , Henderson P. J. F. . ( 2000;). The amplified expression, identification, purification, assay and properties of hexahistidine-tagged bacterial membrane transport proteins. . In Membrane transport – a Practical Approach, pp. 141–166. Edited by Baldwin S. A. . Oxford: Blackwell;.
    [Google Scholar]
  54. Weyand S. , Shimamura T. , Yajima S. , Suzuki S. , Mirza O. , Krusong K. , Carpenter E. P. , Rutherford N. G. , Hadden J. M. , other authors . ( 2008;). Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322: 709–713 [CrossRef] [PubMed].
    [Google Scholar]
  55. Weyand S. , Ma P. , Saidijam M. , Baldwin J. , Beckstein O. , Jackson S. , Suzuki S. , Patching S. G. , Shimamura T. , other authors . ( 2010;). The nucleobase-cation-symport-1 family of membrane transport proteins. . In Handbook of Metalloproteins, 11. Edited by Messerschmidt A. . Chichester:: Wiley; [CrossRef].
    [Google Scholar]
  56. Weyand S. , Shimamura T. , Beckstein O. , Sansom M. S. , Iwata S. , Henderson P. J. , Cameron A. D. . ( 2011;). The alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1. J Synchrotron Radiat 18: 20–23 [CrossRef] [PubMed].
    [Google Scholar]
  57. Witz S. , Panwar P. , Schober M. , Deppe J. , Pasha F. A. , Lemieux M. J. , Möhlmann T. . ( 2014;). Structure-function relationship of a plant NCS1 member – homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis . PLoS One 9: e91343 [CrossRef] [PubMed].
    [Google Scholar]
  58. Wray L.V., Jr , Ferson A. E. , Rohrer K. , Fisher S. H. . ( 1996;). TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis . Proc Natl Acad Sci U S A 93: 8841–8845 [CrossRef] [PubMed].
    [Google Scholar]
  59. Xi H. , Schneider B. L. , Reitzer L. . ( 2000;). Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J Bacteriol 182: 5332–5341 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000266
Loading
/content/journal/micro/10.1099/mic.0.000266
Loading

Data & Media loading...

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error