Release of outer membrane vesicles in as a response to stress caused by cationic surfactants Free

Abstract

A (ATCC 12633), a degrader of cationic surfactants, releases outer membrane vesicles (OMVs) when grown with tetradecyltrimethylammonium bromide (TTAB) as the sole carbon, nitrogen and energy source. The OMVs exhibit a bilayer structure and were found to be composed of lipopolysaccharides, proteins and phospholipids (PLs) such as cardiolipin, phosphatidylcholine, phosphatidic acid and phosphatidylglycerol (PG). The OMVs showed a marked increase in the PG content, approximately 43 % higher than the amount registered in the parent cells from which the vesicles were derived. After growth of with TTAB, the amount of lipoprotein covalently cross-linked to the peptidoglycan showed a twofold decrease when compared with values found after growth without the surfactant [16 ± 2 and 28 ± 3 μg (mg cell envelope protein), respectively]. This decrease in the amount of lipoprotein can be related to areas of loss of contact between the outer membrane and the peptidoglycan and, therefore, to OMV production. In addition, due to its amphiphilic nature, TTAB can contribute to OMV biogenesis, through a physical mechanism, by induction of the curvature of the membrane. Taking into account that OVMs were produced when the cells were grown under external stress, caused by the surfactant, and that TTAB was detected in the vesicles [48 nmol TTAB (nmol PL)], we concluded that this system of TTAB elimination is a mechanism that A (ATCC 12633) would utilize for alleviating stress caused by cationic surfactants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000265
2016-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/5/813.html?itemId=/content/journal/micro/10.1099/mic.0.000265&mimeType=html&fmt=ahah

References

  1. Baumgarten T., Sperling S., Seifert J., von Bergen M., Steiniger F., Wick L. Y., Heipieper H. J. 2012; Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl Environ Microbiol 78:6217–6224 [View Article][PubMed]
    [Google Scholar]
  2. Bergero M. F., Lucchesi G. I. 2013; Degradation of cationic surfactants using Pseudomonas putida A ATCC 12633 immobilized in calcium alginate beads. Biodegradation 24:353–364 [View Article][PubMed]
    [Google Scholar]
  3. Bergero M. F., Lucchesi G. I. 2015; Immobilization of Pseudomonas putida A (ATCC 12633) cells: a promising tool for effective degradation of quaternary ammonium compounds in industrial effluents. Int Biodeterior Biodegradation 100:38–43 [View Article]
    [Google Scholar]
  4. Biller S. J., Schubotz F., Roggensack S. E., Thompson A. W., Summons R. E., Chisholm S. W. 2014; Bacterial vesicles in marine ecosystems. Science 343:183–186 [View Article][PubMed]
    [Google Scholar]
  5. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [View Article][PubMed]
    [Google Scholar]
  6. Boeris P. S., Domenech C. E., Lucchesi G. I. 2007; Modification of phospholipid composition in Pseudomonas putida A ATCC 12633 induced by contact with tetradecyltrimethylammonium. J Appl Microbiol 103:1048–1054 [View Article][PubMed]
    [Google Scholar]
  7. Boeris P. S., Liffourrena A. S., Salvano M. A., Lucchesi G. I. 2009; Physiological role of phosphatidylcholine in the Pseudomonas putida A ATCC 12633 response to tetradecyltrimethylammonium bromide and aluminium. Lett Appl Microbiol 49:491–496 [View Article][PubMed]
    [Google Scholar]
  8. Bomberger J. M., MacEachran D. P., Coutermarsh B. A., Ye S., O'Toole G. A., Stanton B. A. 2009; Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 5:e1000382 [View Article][PubMed]
    [Google Scholar]
  9. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  10. Braun V. 1975; Covalent lipoprotein from the outer membrane of Escherichia coli . Biochim Biophys Acta 415:335–377 [View Article][PubMed]
    [Google Scholar]
  11. Braun V., Wolff H. 1975; Attachment of lipoprotein to murein (peptidoglycan) of Escherichia coli in the presence and absence of penicillin FL 1060. J Bacteriol 123:888–897[PubMed]
    [Google Scholar]
  12. Chowdhury C., Jagannadham M. V. 2013; Virulence factors are released in association with outer membrane vesicles of Pseudomonas syringae pv. tomato T1 during normal growth. Biochim Biophys Acta 1834:231–239 [View Article][PubMed]
    [Google Scholar]
  13. Cristofolini A. L., Turiello M. P., Sanchis E. G., Cufré G., Merkis C. I. 2012; Effect of feed restriction and realimentation with monensin supplementation on placental structure and ultrastructure in anglo-nubian goats. ISRN Vet Sci 2012:490530 [View Article][PubMed]
    [Google Scholar]
  14. Deatherage B. L., Lara J. C., Bergsbaken T., Rassoulian Barrett S. L., Lara S., Cookson B. T. 2009; Biogenesis of bacterial membrane vesicles. Mol Microbiol 72:1395–1407 [View Article][PubMed]
    [Google Scholar]
  15. Dutta S., Iida K., Takade A., Meno Y., Nair G. B., Yoshida S. 2004; Release of Shiga toxin by membrane vesicles in Shigella dysenteriae serotype 1 strains and in vitro effects of antimicrobials on toxin production and release. Microbiol Immunol 48:965–969 [View Article][PubMed]
    [Google Scholar]
  16. Fiske C. H., Subbarow Y. 1925; The colorimetric determination of phosphorus. J Biol Chem 66:375–400
    [Google Scholar]
  17. Gilbert P., Moore L. E. 2005; Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 99:703–715 [View Article][PubMed]
    [Google Scholar]
  18. Grenier D., Mayrand D. 1987; Functional characterization of extracellular vesicles produced by Bacteroides gingivalis . Infect Immun 55:111–117[PubMed]
    [Google Scholar]
  19. Gromova I., Celis J. E. 2006; Protein detection in gels by silver staining: a procedure compatible with mass-spectrometry. In Cell Biology: a Laboratory Handbook pp 219–225 Edited by Celis J. E., Carter N., Hunter T., Shotton D., Simons K., Small J. V. San Diego, CA: Academic Press;
    [Google Scholar]
  20. Hajaya M. G., Pavlostathis S. G. 2012; Fate and effect of benzalkonium chlorides in a continuous-flow biological nitrogen removal system treating poultry processing wastewater. Bioresour Technol 118:73–81 [View Article][PubMed]
    [Google Scholar]
  21. Heredia R. M., Boeris P. S., Biasutti M. A., López G. A., Paulucci N. S., Lucchesi G. I. 2014; Coordinated response of phospholipids and acyl components of membrane lipids in Pseudomonas putida A (ATCC 12633) under stress caused by cationic surfactants. Microbiology 160:2618–2626 [View Article][PubMed]
    [Google Scholar]
  22. Hoekstra D., van der Laan J. W., de Leij L., Witholt B. 1976; Release of outer membrane fragments from normally growing Escherichia coli . Biochim Biophys Acta 455:889–899 [View Article][PubMed]
    [Google Scholar]
  23. Horstman A. L., Kuehn M. J. 2000; Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem 275:12489–12496 [View Article][PubMed]
    [Google Scholar]
  24. Horstman A. L., Kuehn M. J. 2002; Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J Biol Chem 277:32538–32545 [View Article][PubMed]
    [Google Scholar]
  25. Kadurugamuwa J. L., Beveridge T. J. 1995; Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008[PubMed]
    [Google Scholar]
  26. Kato S., Kowashi Y., Demuth D. R. 2002; Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog 32:1–13 [View Article][PubMed]
    [Google Scholar]
  27. Keenan J. I., Davis K. A., Beaugie C. R., McGovern J. J., Moran A. P. 2008; Alterations in Helicobacter pylori outer membrane and outer membrane vesicle-associated lipopolysaccharides under iron-limiting growth conditions. Innate Immun 14:279–290 [View Article][PubMed]
    [Google Scholar]
  28. Klimentová J., Stulík J. 2015; Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiol Res 170:1–9 [View Article][PubMed]
    [Google Scholar]
  29. Kreuzinger N., Fuerhacker M., Scharf S., Uhl M., Gans O., Grillitsch B. 2007; Methodological approach towards the environmental significance of uncharacterized substances – quaternary ammonium compounds as an example. Desalination 215:209–222 [View Article]
    [Google Scholar]
  30. Kulkarni H. M., Jagannadham M. V. 2014; Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology 160:2109–2121 [View Article][PubMed]
    [Google Scholar]
  31. Kulkarni H. M., Swamy Ch. V. B., Jagannadham M. V. 2014; Molecular characterization and functional analysis of outer membrane vesicles from the Antarctic bacterium Pseudomonas syringae suggest a possible response to environmental conditions. J Proteome Res 13:1345–1358 [View Article][PubMed]
    [Google Scholar]
  32. Kulp A., Kuehn M. J. 2010; Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184 [View Article][PubMed]
    [Google Scholar]
  33. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  34. Lakowicz J. R. 1999 Principles of Fluorescence Spectroscopy, 3rd edn New York: Springer; [CrossRef]
    [Google Scholar]
  35. Liffourrena A. S., López F. G., Salvano M. A., Domenech C. E., Lucchesi G. I. 2008; Degradation of tetradecyltrimethylammonium by Pseudomonas putidaA ATCC 12633 restricted by accumulation of trimethylamine is alleviated by addition of Al3+ ions. J Appl Microbiol 104:396–402[PubMed]
    [Google Scholar]
  36. Lucchesi G. I., Lisa T. A., Domenech C. E. 1989; Choline and betaine as inducer agents of Pseudomonas aeruginosa phospholipase C activity in high phosphate medium. FEMS Microbiol Lett 57:335–338 [View Article][PubMed]
    [Google Scholar]
  37. Lucchesi G. I., Liffourrena A. S., Boeris P. S., Salvano M. A. 2010; Adaptative response and degradation of quaternary ammonium compounds by Pseudomonas putida A ATCC 12633. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology pp 1297–1303 Edited by Méndez-Vilas A. Badajoz: Formatex;
    [Google Scholar]
  38. MacDonald I. A., Kuehn M. J. 2012; Offense and defense: microbial membrane vesicles play both ways. Res Microbiol 163:607–618 [View Article][PubMed]
    [Google Scholar]
  39. Manning A. J., Kuehn M. J. 2011; Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol 11:258 [View Article][PubMed]
    [Google Scholar]
  40. McBain A. J., Ledder R. G., Moore L. E., Catrenich C. E., Gilbert P. 2004; Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility. Appl Environ Microbiol 70:3449–3456 [View Article][PubMed]
    [Google Scholar]
  41. McDonnell G., Russell A. D. 1999; Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179
    [Google Scholar]
  42. Morrison W. R., Smith L. M. 1964; Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J Lipid Res 5:600–608[PubMed]
    [Google Scholar]
  43. Mykytczuk N. C. S., Trevors J. T., Leduc L. G., Ferroni G. D. 2007; Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Biol 95:60–82 [View Article][PubMed]
    [Google Scholar]
  44. Nishiyama N., Toshima Y., Ikeda Y. 1995; Biodegradation of alkyltrimethylammonium salts in activated sludge. Chemosphere 30:593–603 [View Article][PubMed]
    [Google Scholar]
  45. Oh S., Kurt Z., Tsementzi D., Weigand M. R., Kim M., Hatt J. K., Tandukar M., Pavlostathis S. G., Spain J. C., Konstantinidis K. T. 2014; Microbial community degradation of widely used quaternary ammonium disinfectants. Appl Environ Microbiol 80:5892–5900 [View Article][PubMed]
    [Google Scholar]
  46. Schertzer J. W., Whiteley M. 2012; A bilayer-couple model of bacterial outer membrane vesicle biogenesis. MBio 3:e00297-11 [View Article][PubMed]
    [Google Scholar]
  47. Schwechheimer C., Sullivan C. J., Kuehn M. J. 2013; Envelope control of outer membrane vesicle production in Gram-negative bacteria. Biochemistry 52:3031–3040 [View Article][PubMed]
    [Google Scholar]
  48. Schwechheimer C., Kulp A., Kuehn M. J. 2014; Modulation of bacterial outer membrane vesicle production by envelope structure and content. BMC Microbiol 14:324 [View Article][PubMed]
    [Google Scholar]
  49. Tashiro Y., Inagaki A., Shimizu M., Ichikawa S., Takaya N., Nakajima-Kambe T., Uchiyama H., Nomura N. 2011; Characterization of phospholipids in membrane vesicles derived from Pseudomonas aeruginosa . Biosci Biotechnol Biochem 75:605–607 [View Article][PubMed]
    [Google Scholar]
  50. Tashiro Y., Uchiyama H., Nomura N. 2012; Multifunctional membrane vesicles in Pseudomonas aeruginosa . Environ Microbiol 14:1349–1362 [View Article][PubMed]
    [Google Scholar]
  51. Tezel U., Pavlostathis S. G. 2015; Quaternary ammonium disinfectants: microbial adaptation, degradation and ecology. Curr Opin Biotechnol 33:296–304 [View Article][PubMed]
    [Google Scholar]
  52. Tezel U., Pierson J. A., Pavlostathis S. G. 2006; Fate and effect of quaternary ammonium compounds on a mixed methanogenic culture. Water Res 40:3660–3668 [View Article][PubMed]
    [Google Scholar]
  53. Trevors J. T. 2003; Fluorescent probes for bacterial cytoplasmic membrane research. J Biochem Biophys Methods 57:87–103 [View Article][PubMed]
    [Google Scholar]
  54. van Ginkel C. G., Kolvenbach M. 1991; Relations between the structure of quaternary alkyl ammonium salts and their biodegradability. Chemosphere 23:281–289 [View Article]
    [Google Scholar]
  55. Westphal O., Jann K. 1965; Bacterial lipopolysaccharides: extraction with phenol-water and further applications of the procedure. Methods in Carbohydr Chem 5:83–91
    [Google Scholar]
  56. Zhang C., Cui F., Zeng G. M., Jiang M., Yang Z. Z., Yu Z. G., Zhu M. Y., Shen L. Q. 2015; Quaternary ammonium compounds (QACs): a review on occurrence, fate and toxicity in the environment. Sci Total Environ 518-519:352–362 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000265
Loading
/content/journal/micro/10.1099/mic.0.000265
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed