1887

Abstract

A (ATCC 12633), a degrader of cationic surfactants, releases outer membrane vesicles (OMVs) when grown with tetradecyltrimethylammonium bromide (TTAB) as the sole carbon, nitrogen and energy source. The OMVs exhibit a bilayer structure and were found to be composed of lipopolysaccharides, proteins and phospholipids (PLs) such as cardiolipin, phosphatidylcholine, phosphatidic acid and phosphatidylglycerol (PG). The OMVs showed a marked increase in the PG content, approximately 43 % higher than the amount registered in the parent cells from which the vesicles were derived. After growth of with TTAB, the amount of lipoprotein covalently cross-linked to the peptidoglycan showed a twofold decrease when compared with values found after growth without the surfactant [16 ± 2 and 28 ± 3 μg (mg cell envelope protein), respectively]. This decrease in the amount of lipoprotein can be related to areas of loss of contact between the outer membrane and the peptidoglycan and, therefore, to OMV production. In addition, due to its amphiphilic nature, TTAB can contribute to OMV biogenesis, through a physical mechanism, by induction of the curvature of the membrane. Taking into account that OVMs were produced when the cells were grown under external stress, caused by the surfactant, and that TTAB was detected in the vesicles [48 nmol TTAB (nmol PL)], we concluded that this system of TTAB elimination is a mechanism that A (ATCC 12633) would utilize for alleviating stress caused by cationic surfactants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000265
2016-05-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/5/813.html?itemId=/content/journal/micro/10.1099/mic.0.000265&mimeType=html&fmt=ahah

References

  1. Baumgarten T., Sperling S., Seifert J., von Bergen M., Steiniger F., Wick L. Y., Heipieper H. J.. 2012; Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl Environ Microbiol78:6217–6224 [CrossRef][PubMed]
    [Google Scholar]
  2. Bergero M. F., Lucchesi G. I.. 2013; Degradation of cationic surfactants using Pseudomonas putida A ATCC 12633 immobilized in calcium alginate beads. Biodegradation24:353–364 [CrossRef][PubMed]
    [Google Scholar]
  3. Bergero M. F., Lucchesi G. I.. 2015; Immobilization of Pseudomonas putida A (ATCC 12633) cells: a promising tool for effective degradation of quaternary ammonium compounds in industrial effluents. Int Biodeterior Biodegradation100:38–43 [CrossRef]
    [Google Scholar]
  4. Biller S. J., Schubotz F., Roggensack S. E., Thompson A. W., Summons R. E., Chisholm S. W.. 2014; Bacterial vesicles in marine ecosystems. Science343:183–186 [CrossRef][PubMed]
    [Google Scholar]
  5. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  6. Boeris P. S., Domenech C. E., Lucchesi G. I.. 2007; Modification of phospholipid composition in Pseudomonas putida A ATCC 12633 induced by contact with tetradecyltrimethylammonium. J Appl Microbiol103:1048–1054 [CrossRef][PubMed]
    [Google Scholar]
  7. Boeris P. S., Liffourrena A. S., Salvano M. A., Lucchesi G. I.. 2009; Physiological role of phosphatidylcholine in the Pseudomonas putida A ATCC 12633 response to tetradecyltrimethylammonium bromide and aluminium. Lett Appl Microbiol49:491–496 [CrossRef][PubMed]
    [Google Scholar]
  8. Bomberger J. M., MacEachran D. P., Coutermarsh B. A., Ye S., O'Toole G. A., Stanton B. A.. 2009; Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog5:e1000382 [CrossRef][PubMed]
    [Google Scholar]
  9. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  10. Braun V.. 1975; Covalent lipoprotein from the outer membrane of Escherichia coli . Biochim Biophys Acta415:335–377 [CrossRef][PubMed]
    [Google Scholar]
  11. Braun V., Wolff H.. 1975; Attachment of lipoprotein to murein (peptidoglycan) of Escherichia coli in the presence and absence of penicillin FL 1060. J Bacteriol123:888–897[PubMed]
    [Google Scholar]
  12. Chowdhury C., Jagannadham M. V.. 2013; Virulence factors are released in association with outer membrane vesicles of Pseudomonas syringae pv. tomato T1 during normal growth. Biochim Biophys Acta1834:231–239 [CrossRef][PubMed]
    [Google Scholar]
  13. Cristofolini A. L., Turiello M. P., Sanchis E. G., Cufré G., Merkis C. I.. 2012; Effect of feed restriction and realimentation with monensin supplementation on placental structure and ultrastructure in anglo-nubian goats. ISRN Vet Sci2012:490530 [CrossRef][PubMed]
    [Google Scholar]
  14. Deatherage B. L., Lara J. C., Bergsbaken T., Rassoulian Barrett S. L., Lara S., Cookson B. T.. 2009; Biogenesis of bacterial membrane vesicles. Mol Microbiol72:1395–1407 [CrossRef][PubMed]
    [Google Scholar]
  15. Dutta S., Iida K., Takade A., Meno Y., Nair G. B., Yoshida S.. 2004; Release of Shiga toxin by membrane vesicles in Shigella dysenteriae serotype 1 strains and in vitro effects of antimicrobials on toxin production and release. Microbiol Immunol48:965–969 [CrossRef][PubMed]
    [Google Scholar]
  16. Fiske C. H., Subbarow Y.. 1925; The colorimetric determination of phosphorus. J Biol Chem66:375–400
    [Google Scholar]
  17. Gilbert P., Moore L. E.. 2005; Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol99:703–715 [CrossRef][PubMed]
    [Google Scholar]
  18. Grenier D., Mayrand D.. 1987; Functional characterization of extracellular vesicles produced by Bacteroides gingivalis . Infect Immun55:111–117[PubMed]
    [Google Scholar]
  19. Gromova I., Celis J. E.. 2006; Protein detection in gels by silver staining: a procedure compatible with mass-spectrometry. In Cell Biology: a Laboratory Handbook pp219–225 Edited by Celis J. E., Carter N., Hunter T., Shotton D., Simons K., Small J. V.. San Diego, CA: Academic Press;
    [Google Scholar]
  20. Hajaya M. G., Pavlostathis S. G.. 2012; Fate and effect of benzalkonium chlorides in a continuous-flow biological nitrogen removal system treating poultry processing wastewater. Bioresour Technol118:73–81 [CrossRef][PubMed]
    [Google Scholar]
  21. Heredia R. M., Boeris P. S., Biasutti M. A., López G. A., Paulucci N. S., Lucchesi G. I.. 2014; Coordinated response of phospholipids and acyl components of membrane lipids in Pseudomonas putida A (ATCC 12633) under stress caused by cationic surfactants. Microbiology160:2618–2626 [CrossRef][PubMed]
    [Google Scholar]
  22. Hoekstra D., van der Laan J. W., de Leij L., Witholt B.. 1976; Release of outer membrane fragments from normally growing Escherichia coli . Biochim Biophys Acta455:889–899 [CrossRef][PubMed]
    [Google Scholar]
  23. Horstman A. L., Kuehn M. J.. 2000; Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem275:12489–12496 [CrossRef][PubMed]
    [Google Scholar]
  24. Horstman A. L., Kuehn M. J.. 2002; Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J Biol Chem277:32538–32545 [CrossRef][PubMed]
    [Google Scholar]
  25. Kadurugamuwa J. L., Beveridge T. J.. 1995; Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol177:3998–4008[PubMed]
    [Google Scholar]
  26. Kato S., Kowashi Y., Demuth D. R.. 2002; Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog32:1–13 [CrossRef][PubMed]
    [Google Scholar]
  27. Keenan J. I., Davis K. A., Beaugie C. R., McGovern J. J., Moran A. P.. 2008; Alterations in Helicobacter pylori outer membrane and outer membrane vesicle-associated lipopolysaccharides under iron-limiting growth conditions. Innate Immun14:279–290 [CrossRef][PubMed]
    [Google Scholar]
  28. Klimentová J., Stulík J.. 2015; Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiol Res170:1–9 [CrossRef][PubMed]
    [Google Scholar]
  29. Kreuzinger N., Fuerhacker M., Scharf S., Uhl M., Gans O., Grillitsch B.. 2007; Methodological approach towards the environmental significance of uncharacterized substances – quaternary ammonium compounds as an example. Desalination215:209–222 [CrossRef]
    [Google Scholar]
  30. Kulkarni H. M., Jagannadham M. V.. 2014; Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology160:2109–2121 [CrossRef][PubMed]
    [Google Scholar]
  31. Kulkarni H. M., Swamy Ch. V. B., Jagannadham M. V.. 2014; Molecular characterization and functional analysis of outer membrane vesicles from the Antarctic bacterium Pseudomonas syringae suggest a possible response to environmental conditions. J Proteome Res13:1345–1358 [CrossRef][PubMed]
    [Google Scholar]
  32. Kulp A., Kuehn M. J.. 2010; Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol64:163–184 [CrossRef][PubMed]
    [Google Scholar]
  33. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  34. Lakowicz J. R.. 1999; Principles of Fluorescence Spectroscopy, 3rd edn New York: Springer;[CrossRef]
    [Google Scholar]
  35. Liffourrena A. S., López F. G., Salvano M. A., Domenech C. E., Lucchesi G. I.. 2008; Degradation of tetradecyltrimethylammonium by Pseudomonas putidaA ATCC 12633 restricted by accumulation of trimethylamine is alleviated by addition of Al3+ ions. J Appl Microbiol104:396–402[PubMed]
    [Google Scholar]
  36. Lucchesi G. I., Lisa T. A., Domenech C. E.. 1989; Choline and betaine as inducer agents of Pseudomonas aeruginosa phospholipase C activity in high phosphate medium. FEMS Microbiol Lett57:335–338 [CrossRef][PubMed]
    [Google Scholar]
  37. Lucchesi G. I., Liffourrena A. S., Boeris P. S., Salvano M. A.. 2010; Adaptative response and degradation of quaternary ammonium compounds by Pseudomonas putida A ATCC 12633. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology pp1297–1303 Edited by Méndez-Vilas A.. Badajoz: Formatex;
    [Google Scholar]
  38. MacDonald I. A., Kuehn M. J.. 2012; Offense and defense: microbial membrane vesicles play both ways. Res Microbiol163:607–618 [CrossRef][PubMed]
    [Google Scholar]
  39. Manning A. J., Kuehn M. J.. 2011; Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol11:258 [CrossRef][PubMed]
    [Google Scholar]
  40. McBain A. J., Ledder R. G., Moore L. E., Catrenich C. E., Gilbert P.. 2004; Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility. Appl Environ Microbiol70:3449–3456 [CrossRef][PubMed]
    [Google Scholar]
  41. McDonnell G., Russell A. D.. 1999; Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev12:147–179
    [Google Scholar]
  42. Morrison W. R., Smith L. M.. 1964; Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J Lipid Res5:600–608[PubMed]
    [Google Scholar]
  43. Mykytczuk N. C. S., Trevors J. T., Leduc L. G., Ferroni G. D.. 2007; Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Biol95:60–82 [CrossRef][PubMed]
    [Google Scholar]
  44. Nishiyama N., Toshima Y., Ikeda Y.. 1995; Biodegradation of alkyltrimethylammonium salts in activated sludge. Chemosphere30:593–603 [CrossRef][PubMed]
    [Google Scholar]
  45. Oh S., Kurt Z., Tsementzi D., Weigand M. R., Kim M., Hatt J. K., Tandukar M., Pavlostathis S. G., Spain J. C., Konstantinidis K. T.. 2014; Microbial community degradation of widely used quaternary ammonium disinfectants. Appl Environ Microbiol80:5892–5900 [CrossRef][PubMed]
    [Google Scholar]
  46. Schertzer J. W., Whiteley M.. 2012; A bilayer-couple model of bacterial outer membrane vesicle biogenesis. MBio3:e00297-11 [CrossRef][PubMed]
    [Google Scholar]
  47. Schwechheimer C., Sullivan C. J., Kuehn M. J.. 2013; Envelope control of outer membrane vesicle production in Gram-negative bacteria. Biochemistry52:3031–3040 [CrossRef][PubMed]
    [Google Scholar]
  48. Schwechheimer C., Kulp A., Kuehn M. J.. 2014; Modulation of bacterial outer membrane vesicle production by envelope structure and content. BMC Microbiol14:324 [CrossRef][PubMed]
    [Google Scholar]
  49. Tashiro Y., Inagaki A., Shimizu M., Ichikawa S., Takaya N., Nakajima-Kambe T., Uchiyama H., Nomura N.. 2011; Characterization of phospholipids in membrane vesicles derived from Pseudomonas aeruginosa . Biosci Biotechnol Biochem75:605–607 [CrossRef][PubMed]
    [Google Scholar]
  50. Tashiro Y., Uchiyama H., Nomura N.. 2012; Multifunctional membrane vesicles in Pseudomonas aeruginosa . Environ Microbiol14:1349–1362 [CrossRef][PubMed]
    [Google Scholar]
  51. Tezel U., Pavlostathis S. G.. 2015; Quaternary ammonium disinfectants: microbial adaptation, degradation and ecology. Curr Opin Biotechnol33:296–304 [CrossRef][PubMed]
    [Google Scholar]
  52. Tezel U., Pierson J. A., Pavlostathis S. G.. 2006; Fate and effect of quaternary ammonium compounds on a mixed methanogenic culture. Water Res40:3660–3668 [CrossRef][PubMed]
    [Google Scholar]
  53. Trevors J. T.. 2003; Fluorescent probes for bacterial cytoplasmic membrane research. J Biochem Biophys Methods57:87–103 [CrossRef][PubMed]
    [Google Scholar]
  54. van Ginkel C. G., Kolvenbach M.. 1991; Relations between the structure of quaternary alkyl ammonium salts and their biodegradability. Chemosphere23:281–289 [CrossRef]
    [Google Scholar]
  55. Westphal O., Jann K.. 1965; Bacterial lipopolysaccharides: extraction with phenol-water and further applications of the procedure. Methods in Carbohydr Chem5:83–91
    [Google Scholar]
  56. Zhang C., Cui F., Zeng G. M., Jiang M., Yang Z. Z., Yu Z. G., Zhu M. Y., Shen L. Q.. 2015; Quaternary ammonium compounds (QACs): a review on occurrence, fate and toxicity in the environment. Sci Total Environ518-519:352–362 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000265
Loading
/content/journal/micro/10.1099/mic.0.000265
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error