1887

Abstract

sp. PCC 6803 is a cyanobacterial model strain widely used to study many biological processes and is also applied for the production of biopolymers. Recently, it was reported that two of its substrains are highly polyploid. To test whether this can be generalized to the whole strain, six substrains were selected and their ploidy levels quantified. The ploidy levels of all substrains were highly growth phase regulated and the copy number was on average about 20 at an OD of 0.1 and about 4 at an OD of 2.5. In addition to growth phase, external conditions were found to influence the ploidy level, i.e. the copy number was elevated at lower light intensity and at higher phosphate concentrations (53 and 35 copies, respectively). In the absence of external phosphate, considerable growth was observed, although growth rate and growth yield were much lower than in the presence of either orthophosphate or genomic DNA as external source of phosphate. A rapid reduction in genome copy number was observed during growth in the absence of phosphate, indicating that replication ceased and genomes were distributed to the daughter cells. During prolonged incubation of stationary-phase cultures in the absence of phosphate, the cells eventually became monoploid. Taking the data together, the ploidy level of sp. PCC 6803 is extremely variable and is influenced by both growth phase and physical and chemical environmental parameters.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000264
2016-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/5/730.html?itemId=/content/journal/micro/10.1099/mic.0.000264&mimeType=html&fmt=ahah

References

  1. Angert E. R.. ( 2012;). DNA replication and genomic architecture of very large bacteria. Annu Rev Microbiol 66: 197–212 [CrossRef] [PubMed].
    [Google Scholar]
  2. Armbrust E. V., Bowen J. D., Olson R. J., Chisholm S. W.. ( 1989;). Effect of light on the cell cycle of a marine Synechococcus strain. Appl Environ Microbiol 55: 425–432 [PubMed].
    [Google Scholar]
  3. Baier A., Winkler W., Korte T., Lockau W., Karradt A.. ( 2014;). Degradation of phycobilisomes in Synechocystis sp. PCC6803: evidence for essential formation of an NblA1/NblA2 heterodimer and its codegradation by A Clp protease complex. J Biol Chem 289: 11755–11766 [CrossRef] [PubMed].
    [Google Scholar]
  4. Breuert S., Allers T., Spohn G., Soppa J.. ( 2006;). Regulated polyploidy in halophilic archaea. PLoS One 1: e92 [CrossRef] [PubMed].
    [Google Scholar]
  5. Finkel S. E., Kolter R.. ( 2001;). DNA as a nutrient: novel role for bacterial competence gene homologs. J Bacteriol 183: 6288–6293 [CrossRef] [PubMed].
    [Google Scholar]
  6. Georg J., Dienst D., Schürgers N., Wallner T., Kopp D., Stazic D., Kuchmina E., Klähn S., Lokstein H., other authors. ( 2014;). The small regulatory RNA SyR1/PsrR1 controls photosynthetic functions in cyanobacteria. Plant Cell 26: 3661–3679 [CrossRef] [PubMed].
    [Google Scholar]
  7. Gomez-Garcia M. R., Fazeli F., Grote A., Grossman A. R., Bhaya D.. ( 2013;). Role of polyphosphate in thermophilic Synechococcus sp. from microbial mats. J Bacteriol 195: 3309–3319 [CrossRef] [PubMed].
    [Google Scholar]
  8. Griese M., Lange C., Soppa J.. ( 2011;). Ploidy in cyanobacteria. FEMS Microbiol Lett 323: 124–131 [CrossRef] [PubMed].
    [Google Scholar]
  9. Grigorieva G., Shestakov S.. ( 1982;). Transformation in the cyanobacterium Synechocystis SP 6803. FEMS Microbiol Lett 13: 367–370 [CrossRef].
    [Google Scholar]
  10. Grillo J. F., Gibson J.. ( 1979;). Regulation of phosphate accumulation in the unicellular cyanobacterium Synechococcus. J Bacteriol 140: 508–517 [PubMed].
    [Google Scholar]
  11. Hagemann M., Erdmann N.. ( 1994;). Activation and pathway of glucosylglycerol synthesis in the cyanobacterium Synechocystis SP PCC 6803. Microbiology 140: 1427–1431 [CrossRef].
    [Google Scholar]
  12. Hansen M. T.. ( 1978;). Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. J Bacteriol 134: 71–75 [PubMed].
    [Google Scholar]
  13. Hildenbrand C., Stock T., Lange C., Rother M., Soppa J.. ( 2011;). Genome copy numbers and gene conversion in methanogenic archaea. J Bacteriol 193: 734–743 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kaneko T., Tabata S.. ( 1997;). Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 38: 1171–1176 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., other authors. ( 1996;). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kanesaki Y., Shiwa Y., Tajima N., Suzuki M., Watanabe S., Sato N., Ikeuchi M., Yoshikawa H.. ( 2012;). Identification of substrain-specific mutations by massively parallel whole-genome resequencing of Synechocystis sp. PCC 6803. DNA Res 19: 67–79 [CrossRef] [PubMed].
    [Google Scholar]
  17. Karl D., Bailiff M.. ( 1989;). The measurement and distribution of dissolved nucleic-acids in aquatic environments. Limnol Oceanogr 34: 543–558 [CrossRef].
    [Google Scholar]
  18. Khakhlova O., Bock R.. ( 2006;). Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J 46: 85–94 [CrossRef] [PubMed].
    [Google Scholar]
  19. Krasikov V., Aguirre von Wobeser E., Dekker H. L., Huisman J., Matthijs H. C.. ( 2012;). Time-series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium Synechocystis PCC 6803. Physiol Plant 145: 426–439 [CrossRef] [PubMed].
    [Google Scholar]
  20. Labarre J., Chauvat F., Thuriaux P.. ( 1989;). Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803. J Bacteriol 171: 3449–3457 [PubMed].
    [Google Scholar]
  21. Lange C., Zerulla K., Breuert S., Soppa J.. ( 2011;). Gene conversion results in the equalization of genome copies in the polyploid haloarchaeon Haloferax volcanii. Mol Microbiol 80: 666–677 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lawrence B. A., Suarez C., DePina A., Click E., Kolodny N. H., Allen M. M.. ( 1998;). Two internal pools of soluble polyphosphate in the cyanobacterium Synechocystis sp. strain PCC 6308: an in vivo 31P NMR spectroscopic study. Arch Microbiol 169: 195–200 [CrossRef] [PubMed].
    [Google Scholar]
  23. Lennon J. T.. ( 2007;). Diversity and metabolism of marine bacteria cultivated on dissolved DNA. Appl Environ Microbiol 73: 2799–2805 [CrossRef] [PubMed].
    [Google Scholar]
  24. Maldonado R., Jiménez J., Casadesús J.. ( 1994;). Changes of ploidy during the Azotobacter vinelandii growth cycle. J Bacteriol 176: 3911–3919 [PubMed].
    [Google Scholar]
  25. Michel K. P., Pistorius E. K.. ( 2004;). Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: the function of IdiA and IsiA. Physiol Plant 120: 36–50 [CrossRef] [PubMed].
    [Google Scholar]
  26. Michelsen O., Hansen F. G., Albrechtsen B., Jensen P. R.. ( 2010;). The MG1363 and IL1403 laboratory strains of Lactococcus lactis and several dairy strains are diploid. J Bacteriol 192: 1058–1065 [CrossRef] [PubMed].
    [Google Scholar]
  27. Morohoshi T., Maruo T., Shirai Y., Kato J., Ikeda T., Takiguchi N., Ohtake H., Kuroda A.. ( 2002;). Accumulation of inorganic polyphosphate in phoU mutants of Escherichia coli and Synechocystis sp. strain PCC6803. Appl Environ Microbiol 68: 4107–4110 [CrossRef] [PubMed].
    [Google Scholar]
  28. Nagpal P., Jafri S., Reddy M. A., Das H. K.. ( 1989;). Multiple chromosomes of Azotobacter vinelandii. J Bacteriol 171: 3133–3138 [PubMed].
    [Google Scholar]
  29. Nakamura Y., Kaneko T., Miyajima N., Tabata S.. ( 1999;). Extension of CyanoBase. CyanoMutants: repository of mutant information on Synechocystis sp. strain PCC6803. Nucleic Acids Res 27: 66–68 [CrossRef] [PubMed].
    [Google Scholar]
  30. Nakamura Y., Kaneko T., Tabata S.. ( 2000;). CyanoBase, the genome database for Synechocystis sp. strain PCC6803: status for the year 2000. Nucleic Acids Res 28: 72 [CrossRef] [PubMed].
    [Google Scholar]
  31. Ohtani N., Tomita M., Itaya M.. ( 2010;). An extreme thermophile, Thermus thermophilus, is a polyploid bacterium. J Bacteriol 192: 5499–5505 [CrossRef] [PubMed].
    [Google Scholar]
  32. Paul J. H., Jiang S. C., Rose J. B.. ( 1991;). Concentration of viruses and dissolved DNA from aquatic environments by vortex flow filtration. Appl Environ Microbiol 57: 2197–2204 [PubMed].
    [Google Scholar]
  33. Pecoraro V., Zerulla K., Lange C., Soppa J.. ( 2011;). Quantification of ploidy in proteobacteria revealed the existence of monoploid, (mero-)oligoploid and polyploid species. PLoS One 6: e16392 [CrossRef] [PubMed].
    [Google Scholar]
  34. Pinchuk G. E., Ammons C., Culley D. E., Li S. M., McLean J. S., Romine M. F., Nealson K. H., Fredrickson J. K., Beliaev A. S.. ( 2008;). Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction. Appl Environ Microbiol 74: 1198–1208 [CrossRef] [PubMed].
    [Google Scholar]
  35. Rippka R., Deruelles J., Waterbury J., Herdman M., Stanier R.. ( 1979;). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61.
    [Google Scholar]
  36. Schneider D., Fuhrmann E., Scholz I., Hess W. R., Graumann P. L.. ( 2007;). Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes. BMC Cell Biol 8: 39 [CrossRef] [PubMed].
    [Google Scholar]
  37. Seki Y., Nitta K., Kaneko Y.. ( 2014;). Observation of polyphosphate bodies and DNA during the cell division cycle of Synechococcus elongatus PCC 7942. Plant Biol (Stuttg) 16: 258–263 [CrossRef] [PubMed].
    [Google Scholar]
  38. Simon R. D.. ( 1977;). Macromolecular composition of spores from the filamentous cyanobacterium Anabaena cylindrica. J Bacteriol 129: 1154–1155 [PubMed].
    [Google Scholar]
  39. Simon R.. ( 1980;). DNA content of heterocysts and spores of the filamentous cyanobacterium Anabaena variabilis. FEMS Microbiol Lett 8: 241–245 [CrossRef].
    [Google Scholar]
  40. Siuda W., Gude H.. ( 1996;). Determination of dissolved deoxyribonucleic acid concentration in lake water. Aquat Microb Ecol 11: 193–202 [CrossRef].
    [Google Scholar]
  41. Soppa J.. ( 2013;). Evolutionary advantages of polyploidy in halophilic archaea. Biochem Soc Trans 41: 339–343 [CrossRef] [PubMed].
    [Google Scholar]
  42. Soppa J.. ( 2014;). Polyploidy in archaea and bacteria: about desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. J Mol Microbiol Biotechnol 24: 409–419 [CrossRef] [PubMed].
    [Google Scholar]
  43. Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G.. ( 1971;). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35: 171–205 [PubMed].
    [Google Scholar]
  44. Tajima N., Sato S., Maruyama F., Kaneko T., Sasaki N. V., Kurokawa K., Ohta H., Kanesaki Y., Yoshikawa H., other authors. ( 2011;). Genomic structure of the cyanobacterium Synechocystis sp. PCC 6803 strain GT-S. DNA Res 18: 393–399 [CrossRef] [PubMed].
    [Google Scholar]
  45. Tichy M., Vermaas W.. ( 1999;). In vivo role of catalase-peroxidase in Synechocystis sp. strain PCC 6803. J Bacteriol 181: 1875–1882 [PubMed].
    [Google Scholar]
  46. Trautmann D., Voss B., Wilde A., Al-Babili S., Hess W. R.. ( 2012;). Microevolution in cyanobacteria: re-sequencing a motile substrain of Synechocystis sp. PCC 6803. DNA Res 19: 435–448 [CrossRef] [PubMed].
    [Google Scholar]
  47. Vaulot D., Marie D., Olson R. J., Chisholm S. W.. ( 1995;). Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268: 1480–1482 [CrossRef] [PubMed].
    [Google Scholar]
  48. Watanabe S., Ohbayashi R., Shiwa Y., Noda A., Kanesaki Y., Chibazakura T., Yoshikawa H.. ( 2012;). Light-dependent and asynchronous replication of cyanobacterial multi-copy chromosomes. Mol Microbiol 83: 856–865 [CrossRef] [PubMed].
    [Google Scholar]
  49. Watanabe S., Ohbayashi R., Kanesaki Y., Saito N., Chibazakura T., Soga T., Yoshikawa H.. ( 2015;). Intensive replication and metabolism during the lag phase in cyanobacteria. PLoS One 10: e0136800 [CrossRef] [PubMed].
    [Google Scholar]
  50. Williams J. G.. ( 1988;). Construction or specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol 167: 766–778 [CrossRef].
    [Google Scholar]
  51. Zerulla K., Soppa J.. ( 2014;). Polyploidy in haloarchaea: advantages for growth and survival. Front Microbiol 5: 274 [CrossRef] [PubMed].
    [Google Scholar]
  52. Zerulla K., Chimileski S., Näther D., Gophna U., Papke R. T., Soppa J.. ( 2014;). DNA as a phosphate storage polymer and the alternative advantages of polyploidy for growth or survival. PLoS One 9: e94819 [CrossRef] [PubMed].
    [Google Scholar]
  53. Zhang F., Blasiak L. C., Karolin J. O., Powell R. J., Geddes C. D., Hill R. T.. ( 2015;). Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. Proc Natl Acad Sci U S A 112: 4381–4386 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000264
Loading
/content/journal/micro/10.1099/mic.0.000264
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error