1887

Abstract

Triacylglycerol (TAG) produced by microalgae is a potential source of biofuel. Although various metabolic pathways in TAG synthesis have been identified in land plants, the pathway of TAG synthesis in microalgae remains to be clarified. The unicellular rhodophyte has unique properties as a producer of biofuel because of easy culture and feasibility of genetic engineering. Additionally, it is useful in the investigation of the pathway of TAG synthesis, because all of the nuclear, mitochondrial and plastid genomes have been completely sequenced. We found that this alga accumulated TAG under nitrogen deprivation. Curiously, the amount and composition of plastid membrane lipids did not change significantly, whereas the amount of endoplasmic reticulum (ER) lipids increased with considerable changes in fatty acid composition. The nitrogen deprivation did not decrease photosynthetic oxygen evolution per chlorophyll significantly, while phycobilisomes were degraded preferentially. These results suggest that the synthesis of fatty acids is maintained in the plastid, which is used for the synthesis of TAG in the ER. The accumulated TAG contained mainly 18 : 2(9,12) at the C-2 position, which could be derived from phosphatidylcholine, which also contains this acid at the C-2 position.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000261
2016-05-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/5/803.html?itemId=/content/journal/micro/10.1099/mic.0.000261&mimeType=html&fmt=ahah

References

  1. Aikawa S., Izumi Y., Matsuda F., Hasunuma T., Chang J. S., Kondo A.. 2012; Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresour Technol108:211–215 [CrossRef][PubMed]
    [Google Scholar]
  2. Aikawa S., Joseph A., Yamada R., Izumi Y., Yamagishi T., Matsuda F., Kawai H., Chang J.-S., Hasunuma T., Kondo A.. 2013; Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy Environ Sci6:1844 [CrossRef]
    [Google Scholar]
  3. Alam P., Rabbani G., Badr G., Badr B. M., Khan R. H.. 2015; The surfactant-induced conformational and activity alterations in Rhizopus niveus lipase. Cell Biochem Biophys71:1199–1206 [CrossRef][PubMed]
    [Google Scholar]
  4. Ball S. G., Dirick L., Decq A., Martiat J.-C., Matagne R.. 1990; Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii . Plant Sci66:1–9 [CrossRef]
    [Google Scholar]
  5. Barron E. J., Stumpf P. K.. 1962; Fat metabolism in higher plants. XIX. The biosynthesis of triglycerides by avocado-mesocarp enzymes. Biochim Biophys Acta60:329–337 [CrossRef][PubMed]
    [Google Scholar]
  6. Bates P. D., Browse J.. 2012; The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering. Front Plant Sci3:147 [CrossRef][PubMed]
    [Google Scholar]
  7. Bates P. D., Fatihi A., Snapp A. R., Carlsson A. S., Browse J., Lu C.. 2012; Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. Plant Physiol160:1530–1539 [CrossRef][PubMed]
    [Google Scholar]
  8. Bates P. D., Stymne S., Ohlrogge J.. 2013; Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol16:358–364 [CrossRef][PubMed]
    [Google Scholar]
  9. Berkelman T. R., Lagarias J. C.. 1986; Visualization of bilin-linked peptides and proteins in polyacrylamide gels. Anal Biochem156:194–201 [CrossRef][PubMed]
    [Google Scholar]
  10. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  11. Chisti Y.. 2007; Biodiesel from microalgae. Biotechnol Adv25:294–306 [CrossRef][PubMed]
    [Google Scholar]
  12. De Luca P., Taddei R., Varano L.. 1978;Cyanidioschyzon merolae’: a new alga of thermal acidic environments. Webbia33:37–44 [CrossRef]
    [Google Scholar]
  13. Dismukes G. C., Carrieri D., Bennette N., Ananyev G. M., Posewitz M. C.. 2008; Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol19:235–240 [CrossRef][PubMed]
    [Google Scholar]
  14. Georgianna D. R., Mayfield S. P.. 2012; Exploiting diversity and synthetic biology for the production of algal biofuels. Nature488:329–335 [CrossRef][PubMed]
    [Google Scholar]
  15. Hicks G. R., Hironaka C. M., Dauvillee D., Funke R. P., D'Hulst C., Waffenschmidt S., Ball S. G.. 2001; When simpler is better. Unicellular green algae for discovering new genes and functions in carbohydrate metabolism. Plant Physiol127:1334–1338 [CrossRef][PubMed]
    [Google Scholar]
  16. Ho S. H., Nakanishi A., Ye X., Chang J. S., Chen C. Y., Hasunuma T., Kondo A.. 2015; Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity. Biotechnol Biofuels8:48 [CrossRef][PubMed]
    [Google Scholar]
  17. Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M., Darzins A.. 2008; Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J54:621–639 [CrossRef][PubMed]
    [Google Scholar]
  18. Imamura S., Terashita M., Ohnuma M., Maruyama S., Minoda A., Weber A. P. M., Inouye T., Sekine Y., Fujita Y., other authors. 2010; Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: genetic evidence for nitrite reduction by a sulfite reductase-like enzyme. Plant Cell Physiol51:707–717 [CrossRef][PubMed]
    [Google Scholar]
  19. Imamura S., Kawase Y., Kobayashi I., Sone T., Era A., Miyagishima S. Y., Shimojima M., Ohta H., Tanaka K.. 2015; Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae. Plant Mol Biol89:309–318 [CrossRef][PubMed]
    [Google Scholar]
  20. Itoh R., Takahashi H., Toda K., Kuroiwa H., Kuroiwa T.. 1996; Aphidicolin uncouples the chloroplast division cycle from the mitotic cycle in the unicellular red alga Cyanidioschyzon merolae . Eur J Cell Biol71:303–310[PubMed]
    [Google Scholar]
  21. Iwai M., Ikeda K., Shimojima M., Ohta H.. 2014; Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter. Plant Biotechnol J12:808–819 [CrossRef][PubMed]
    [Google Scholar]
  22. James G. O., Hocart C. H., Hillier W., Chen H., Kordbacheh F., Price G. D., Djordjevic M. A.. 2011; Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresour Technol102:3343–3351 [CrossRef][PubMed]
    [Google Scholar]
  23. Kennedy E. P.. 1961; Biosynthesis of complex lipids. Fed Proc20:934–940[PubMed]
    [Google Scholar]
  24. Knothe G.. 2009; Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci2:759–766 [CrossRef]
    [Google Scholar]
  25. Kohno M., Kugimiya W., Hashimoto Y., Morita Y.. 1994; Purification, characterization, and crystallization of two types of lipase from Rhizopus niveus . Biosci Biotechnol Biochem58:1007–1012 [CrossRef][PubMed]
    [Google Scholar]
  26. Kuroiwa T.. 1998; The primitive red algae Cyanidium caldarium and Cyanidioschyzon merolae as model system for investigating the dividing apparatus of mitochondria and plastids. BioEssays20:344–354 [CrossRef]
    [Google Scholar]
  27. Lee J., Welti R., Schapaugh W. T., Trick H. N.. 2011; Phospholipid and triacylglycerol profiles modified by PLD suppression in soybean seed. Plant Biotechnol J9:359–372 [CrossRef][PubMed]
    [Google Scholar]
  28. Leite G. B., Abdelaziz A. E. M., Hallenbeck P. C.. 2013; Algal biofuels: challenges and opportunities. Bioresour Technol145:134–141 [CrossRef][PubMed]
    [Google Scholar]
  29. Lu C., Xin Z., Ren Z., Miquel M., Browse J.. 2009; An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis . Proc Natl Acad Sci U S A106:18837–18842 [CrossRef][PubMed]
    [Google Scholar]
  30. Lung S. C., Weselake R. J.. 2006; Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids41:1073–1088 [CrossRef][PubMed]
    [Google Scholar]
  31. Matsuzaki M., Misumi O., Shin-I T., Maruyama S., Takahara M., Miyagishima S.-Y., Mori T., Nishida K., Yagisawa F., other authors. 2004; Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature428:653–657 [CrossRef][PubMed]
    [Google Scholar]
  32. Minoda A., Sakagami R., Yagisawa F., Kuroiwa T., Tanaka K.. 2004; Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol45:667–671 [CrossRef][PubMed]
    [Google Scholar]
  33. Moellering E. R., Benning C.. 2010; RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii . Eukaryot Cell9:97–106 [CrossRef][PubMed]
    [Google Scholar]
  34. Moriyama T., Terasawa K., Fujiwara M., Sato N.. 2008; Purification and characterization of organellar DNA polymerases in the red alga Cyanidioschyzon merolae . FEBS J275:2899–2918 [CrossRef][PubMed]
    [Google Scholar]
  35. Moriyama T., Mori N., Sato N.. 2015; Activation of oxidative carbon metabolism by nutritional enrichment by photosynthesis and exogenous organic compounds in the red alga Cyanidioschyzon merolae: evidence for heterotrophic growth. Springerplus4:559 [CrossRef][PubMed]
    [Google Scholar]
  36. Msanne J., Xu D., Konda A. R., Casas-Mollano J. A., Awada T., Cahoon E. B., Cerutti H.. 2012; Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry75:50–59 [CrossRef][PubMed]
    [Google Scholar]
  37. Nakamura Y., Awai K., Masuda T., Yoshioka Y., Takamiya K., Ohta H.. 2005; A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis . J Biol Chem280:7469–7476 [CrossRef][PubMed]
    [Google Scholar]
  38. Nakazawa M., Andoh H., Koyama K., Watanabe Y., Nakai T., Ueda M., Sakamoto T., Inui H., Nakano Y., Miyatake K.. 2015; Alteration of wax ester content and composition in Euglena gracilis with gene silencing of 3-ketoacyl-CoA thiolase isozymes. Lipids50:483–492 [CrossRef][PubMed]
    [Google Scholar]
  39. Nozaki H., Takano H., Misumi O., Terasawa K., Matsuzaki M., Maruyama S., Nishida K., Yagisawa F., Yoshida Y., other authors. 2007; A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae . BMC Biol5:28 [CrossRef][PubMed]
    [Google Scholar]
  40. Ohnuma M., Yokoyama T., Inouye T., Sekine Y., Tanaka K.. 2008; Polyethylene glycol (PEG)-mediated transient gene expression in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol49:117–120 [CrossRef][PubMed]
    [Google Scholar]
  41. Ohta N., Sato N., Kuroiwa T.. 1998; Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence. Nucleic Acids Res26:5190–5198 [CrossRef][PubMed]
    [Google Scholar]
  42. Ohta N., Matsuzaki M., Misumi O., Miyagishima S. Y., Nozaki H., Tanaka K., Shin-I T., Kohara Y., Kuroiwa T.. 2003; Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae . DNA Res10:67–77 [CrossRef][PubMed]
    [Google Scholar]
  43. Oncel S. S., Kose A., Faraloni C., Imamoglu E., Elibol M., Torzillo G., Sukan F. V.. 2014; Biohydrogen production using mutant strains of Chlamydomonas reinhardtii: the effects of light intensity and illumination patterns. Biochem Eng J92:47–52 [CrossRef]
    [Google Scholar]
  44. Porra R. J., Thompson W. A., Kriedemann P. E.. 1989; Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta Bioenergetics975:384–394 [CrossRef]
    [Google Scholar]
  45. Radakovits R., Eduafo P. M., Posewitz M. C.. 2011; Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum . Metab Eng13:89–95 [CrossRef][PubMed]
    [Google Scholar]
  46. Sakurai K., Moriyama T., Sato N.. 2014; Detailed identification of fatty acid isomers sheds light on the probable precursors of triacylglycerol accumulation in photoautotrophically grown Chlamydomonas reinhardtii . Eukaryot Cell13:256–266 [CrossRef][PubMed]
    [Google Scholar]
  47. Sato N., Moriyama T.. 2007; Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae: lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis. Eukaryot Cell6:1006–1017 [CrossRef][PubMed]
    [Google Scholar]
  48. Sato N., Katsumata Y., Sato K., Tajima N.. 2014; Cellular dynamics drives the emergence of supracellular structure in the cyanobacterium, Phormidium sp. KS. Life (Basel)4:819–836[PubMed]
    [Google Scholar]
  49. Scott S. A., Davey M. P., Dennis J. S., Horst I., Howe C. J., Lea-Smith D. J., Smith A. G.. 2010; Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol21:277–286 [CrossRef][PubMed]
    [Google Scholar]
  50. Siaut M., Cuiné S., Cagnon C., Fessler B., Nguyen M., Carrier P., Beyly A., Beisson F., Triantaphylidès C., other authors. 2011; Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol11:7 [CrossRef][PubMed]
    [Google Scholar]
  51. Sperling P., Linscheid M., Stöcker S., Mühlbach H. P., Heinz E.. 1993; In vivo desaturation of cis-Δ9-monounsaturated to cis-Δ9,12-diunsaturated alkenylether glycerolipids. J Biol Chem268:26935–26940[PubMed]
    [Google Scholar]
  52. Sumiya N., Kawase Y., Hayakawa J., Matsuda M., Nakamura M., Era A., Tanaka K., Kondo A., Hasunuma T., other authors. 2015; Expression of cyanobacterial acyl-ACP reductase elevates the triacylglycerol level in the red alga Cyanidioschyzon merolae . Plant Cell Physiol56:1962–1980 [CrossRef][PubMed]
    [Google Scholar]
  53. Thelen J. J., Ohlrogge J. B.. 2002; Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng4:12–21 [CrossRef][PubMed]
    [Google Scholar]
  54. Toda K., Takano H., Miyagishima S., Kuroiwa H., Kuroiwa T.. 1998; Characterization of a chloroplast isoform of serine acetyltransferase from the thermo-acidiphilic red alga Cyanidioschyzon merolae . Biochim Biophys Acta Mol Cell Res1403:72–84[CrossRef]
    [Google Scholar]
  55. Tornabene T. G., Holzer G., Lien S., Burris N.. 1983; Lipid composition of the nitrogen starved green alga Neochloris oleoabundans . Enzyme Microb Technol5:435–440 [CrossRef]
    [Google Scholar]
  56. Toyoshima M., Sato N.. 2015; High-level accumulation of triacylglycerol and starch in photoautotrophically grown Chlamydomonas debaryana NIES-2212. Plant Cell Physiol56:2447–2456 [CrossRef][PubMed]
    [Google Scholar]
  57. Turchetto-Zolet A. C., Maraschin F. S., de Morais G. L., Cagliari A., Andrade C. M. B., Margis-Pinheiro M., Margis R.. 2011; Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis. BMC Evol Biol11:263 [CrossRef][PubMed]
    [Google Scholar]
  58. van de Loo F. J., Broun P., Turner S., Somerville C.. 1995; An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proc Natl Acad Sci U S A92:6743–6747 [CrossRef][PubMed]
    [Google Scholar]
  59. Wallis J. G., Watts J. L., Browse J.. 2002; Polyunsaturated fatty acid synthesis: what will they think of next?. Trends Biochem Sci27:467–473 [CrossRef][PubMed]
    [Google Scholar]
  60. Weiss S. B., Kennedy E. P., Kiyasu J. Y.. 1960; The enzymatic synthesis of triglycerides. J Biol Chem235:40–44[PubMed]
    [Google Scholar]
  61. Wolfe G. R., Cunningham F. X., Durnfordt D., Green B. R., Gantt E.. 1994; Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature367:566–568 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000261
Loading
/content/journal/micro/10.1099/mic.0.000261
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error