1887

Abstract

Antigenically distinct members of bacterial species can be differentially distributed in the environment. Predators known to consume antigenically distinct prey with different efficiencies are also differentially distributed. Here we show that antigenically distinct, but otherwise isogenic and physiologically indistinct, strains of show differential survival in natural soil, sediment and intestinal environments, where they would face a community of predators. Decline in overall cell numbers is attenuated by factors that inhibit the action of predators, including heat and antiprotozoal and antihelminthic drugs. Moreover, the fitness of strains facing these predators – calculated by comparing survival with and without treatments attenuating predator activity – varies between environments. These results suggest that relative survival in natural environments is arbitrated by communities of natural predators whose feeding preferences, if not species composition, vary between environments. These data support the hypothesis that survival against natural predators may drive the differential distribution of bacteria among microenvironments.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000259
2016-04-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/4/610.html?itemId=/content/journal/micro/10.1099/mic.0.000259&mimeType=html&fmt=ahah

References

  1. Baumann P.. 2005; Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol59:155–189 [CrossRef][PubMed]
    [Google Scholar]
  2. Boyd E. F., Wang F.-S., Beltran P., Plock S. A., Nelson K., Selander R. K.. 1993; Salmonella reference collection B (SARB): strains of 37 serovars of subspecies I. J Gen Microbiol139:1125–1132 [CrossRef][PubMed]
    [Google Scholar]
  3. Butela K., Lawrence J. G.. 2009; Population Genetics of Salmonella: Selection for Antigenic Diversity. In Bacterial Population Genetics in Infectious Disease pp. 287–319 Edited by Robinson, D. Falush A., Feil E. J.. London: Wiley-Blackwell;
    [Google Scholar]
  4. Butela K., Lawrence J.. 2010; Population genetics of Salmonella: selection for antigenic diversity. In Bacterial Population Genetics in Infectious Disease pp287–319 Edited by Robinson D. A., Falush D., Feil E. J.. Hoboken, NJ: Wiley-Blackwell; [CrossRef]
    [Google Scholar]
  5. Butela K., Lawrence J. G.. 2012; Genetic manipulation of pathogenicity loci in non-Typhimurium Salmonella. J Microbiol Methods91:477–482 [CrossRef][PubMed]
    [Google Scholar]
  6. Chaisson K. E., Hallem E. A.. 2012; Chemosensory behaviors of parasites. Trends Parasitol28:427–436 [CrossRef][PubMed]
    [Google Scholar]
  7. Chibani-Chennoufi S., Bruttin A., Dillmann M. L., Brüssow H.. 2004; Phage-host interaction: an ecological perspective. J Bacteriol186:3677–3686 [CrossRef][PubMed]
    [Google Scholar]
  8. Cully D. F., Vassilatis D. K., Liu K. K., Paress P. S., Van der Ploeg L. H., Schaeffer J. M., Arena J. P.. 1994; Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature371:707–711 [CrossRef][PubMed]
    [Google Scholar]
  9. Dale N. G.. 1974; Bacteria in intertidal sediments: factors related to their distribution. Limnol Oceanogr19:509–518 [CrossRef]
    [Google Scholar]
  10. Edwards D. I., Mathison G. E.. 1970; The mode of action of metronidazole against Trichomonas vaginalis. J Gen Microbiol63:297–302 [CrossRef][PubMed]
    [Google Scholar]
  11. Gordon D. M., Cowling A.. 2003; The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology149:3575–3586 [CrossRef][PubMed]
    [Google Scholar]
  12. Gordon D. M., FitzGibbon F.. 1999; The distribution of enteric bacteria from Australian mammals: host and geographical effects. Microbiology145:2663–2671 [CrossRef][PubMed]
    [Google Scholar]
  13. Gordon D. M., Stern S. E., Collignon P. J.. 2005; Influence of the age and sex of human hosts on the distribution of Escherichia coli ECOR groups and virulence traits. Microbiology151:15–23 [CrossRef][PubMed]
    [Google Scholar]
  14. Grimont P.A.D., Weill F.-X.. 2007; Antigenic Formulae of the Salmonella Serovars, 9th edn. Paris: WHO Collaborating Centre for Reference and Research on Salmonella;
    [Google Scholar]
  15. Hahn M. W., Höfle M. G.. 2001; Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol35:113–121 [CrossRef][PubMed]
    [Google Scholar]
  16. Human Microbiome Consortium 2012; Structure, function and diversity of the healthy human microbiome. Nature486:207–214 [CrossRef][PubMed]
    [Google Scholar]
  17. Jjemba P. K.. 2001; The interaction of protozoa with their potential prey bacteria in the rhizosphere. J Eukaryot Microbiol48:320–324 [CrossRef][PubMed]
    [Google Scholar]
  18. Lawrence J. G., Butela K., Atzinger A.. 2013; A likelihood approach to classifying fluorescent events collected by multicolor flow cytometry. J Microbiol Methods94:1–12 [CrossRef][PubMed]
    [Google Scholar]
  19. Levin B. R., Antonovics J., Sharma H.. 1988; Frequency-dependent selection in bacterial populations. Philos Trans R Soc Lond B Biol Sci319:459–472 [CrossRef][PubMed]
    [Google Scholar]
  20. Luna G. M., Manini E., Danovaro R.. 2002; Large fraction of dead and inactive bacteria in coastal marine sediments: comparison of protocols for determination and ecological significance. Appl Environ Microbiol68:3509–3513 [CrossRef][PubMed]
    [Google Scholar]
  21. Martin R. J., Robertson A. P.. 2007; Mode of action of levamisole and pyrantel, anthelmintic resistance, E153 and Q57. Parasitology134:1093–1104 [CrossRef][PubMed]
    [Google Scholar]
  22. Milkman R., Jaeger E., McBride R. D.. 2003; Molecular evolution of the Escherichia coli chromosome. VI. Two regions of high effective recombination. Genetics163:475–483[PubMed]
    [Google Scholar]
  23. Moens T., Verbeeck L., de Maeyer A., Swings J., Vincx M.. 1999; Selective attraction of marine bacterivorous nematodes to their bacterial food. Mar Ecol Prog Ser176:165–178 [CrossRef]
    [Google Scholar]
  24. Nyström T.. 2002; Aging in bacteria. Curr Opin Microbiol5:596–601 [CrossRef][PubMed]
    [Google Scholar]
  25. Nyström T.. 2007; A bacterial kind of aging. PLoS Genet3:e224 [CrossRef][PubMed]
    [Google Scholar]
  26. Peduzzi P., Schiemer F.. 2004; Bacteria and viruses in the water column of tropical freshwater reservoirs. Environ Microbiol6:707–715 [CrossRef][PubMed]
    [Google Scholar]
  27. Pernthaler J.. 2005; Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol3:537–546 [CrossRef][PubMed]
    [Google Scholar]
  28. Prot J.-C.. 1980; Migration of plant-parasitic nematodes towards plant roots. Rev Nématol3:305–318
    [Google Scholar]
  29. Quon D. V., d'Oliveira C. E., Johnson P. J.. 1992; Reduced transcription of the ferredoxin gene in metronidazole-resistant Trichomonas vaginalis. Proc Natl Acad Sci U S A89:4402–4406 [CrossRef][PubMed]
    [Google Scholar]
  30. Reeves P.. 1995; Role of O-antigen variation in the immune response. Trends Microbiol3:381–386 [CrossRef][PubMed]
    [Google Scholar]
  31. Retchless A. C., Lawrence J. G.. 2007; Temporal fragmentation of speciation in bacteria. Science317:1093–1096 [CrossRef][PubMed]
    [Google Scholar]
  32. Rodríguez-Zaragoza S.. 1994; Ecology of free-living amoebae. Crit Rev Microbiol20:225–241 [CrossRef][PubMed]
    [Google Scholar]
  33. Rønn R., McCaig A. E., Griffiths B. S., Prosser J. I.. 2002; Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol68:6094–6105 [CrossRef][PubMed]
    [Google Scholar]
  34. Roszak D. B., Colwell R. R.. 1987; Survival strategies of bacteria in the natural environment. Microbiol Rev51:365–379[PubMed]
    [Google Scholar]
  35. Sørensen S. J., Schyberg T., Rønn R.. 1999; Predation by protozoa on Escherichia coli K12 in soil and transfer of resistance plasmid RP4 to indigenous bacteria in soil. Appl Soil Ecol11:79–90 [CrossRef]
    [Google Scholar]
  36. Trevors J. T.. 2010; One gram of soil: a microbial biochemical gene library. Antonie van Leeuwenhoek97:99–106 [CrossRef][PubMed]
    [Google Scholar]
  37. Vassilatis D. K., Arena J. P., Plasterk R. H., Wilkinson H. A., Schaeffer J. M., Cully D. F., Van der Ploeg L. H.. 1997; Genetic and biochemical evidence for a novel avermectin-sensitive chloride channel in Caenorhabditis elegans. Isolation and characterization. J Biol Chem272:33167–33174 [CrossRef][PubMed]
    [Google Scholar]
  38. Walk S. T., Alm E. W., Gordon D. M., Ram J. L., Toranzos G. A., Tiedje J. M., Whittam T. S.. 2009; Cryptic lineages of the genus Escherichia. Appl Environ Microbiol75:6534–6544 [CrossRef][PubMed]
    [Google Scholar]
  39. Ward S.. 1973; Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci U S A70:817–821 [CrossRef][PubMed]
    [Google Scholar]
  40. Watson S. W., Novitsky T. J., Quinby H. L., Valois F. W.. 1977; Determination of bacterial number and biomass in the marine environment. Appl Environ Microbiol33:940–946[PubMed]
    [Google Scholar]
  41. Whitman W. B., Coleman D. C., Wiebe W. J.. 1998; Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A95:6578–6583 [CrossRef][PubMed]
    [Google Scholar]
  42. Wildschutte H., Lawrence J. G.. 2007; Differential Salmonella survival against communities of intestinal amoebae. Microbiology153:1781–1789 [CrossRef][PubMed]
    [Google Scholar]
  43. Wildschutte H., Wolfe D. M., Tamewitz A., Lawrence J. G.. 2004; Protozoan predation, diversifying selection, and the evolution of antigenic diversity in Salmonella. Proc Natl Acad Sci U S A101:10644–10649 [CrossRef][PubMed]
    [Google Scholar]
  44. Wildschutte H., Preheim S. P., Hernandez Y., Polz M. F.. 2010; O-antigen diversity and lateral transfer of the wbe region among Vibrio splendidus isolates. Environ Microbiol12:2977–2987 [CrossRef][PubMed]
    [Google Scholar]
  45. Wommack K. E., Colwell R. R.. 2000; Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev64:69–114 [CrossRef][PubMed]
    [Google Scholar]
  46. Yuste E., Moya A., López-Galíndez C.. 2002; Frequency-dependent selection in human immunodeficiency virus type 1. J Gen Virol83:103–106 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000259
Loading
/content/journal/micro/10.1099/mic.0.000259
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error