1887

Abstract

subsp. (MAP), the aetiological agent of Johne's disease, is one of the most important bacterial pathogens in ruminants. A thorough understanding of MAP pathogenesis is needed to develop new vaccines and diagnostic tests. The generation of comprehensive random transposon mutant libraries is a fundamental genetic technology to determine the role of genes in physiology and pathogenesis. In this study, whole MAP genome analysis compared the insertion sites for the mycobacterial transposon Tn derived from the insertion sequence IS and the transposon MycoMarT7 carrying the transposase. We determined that only MycoMarT7 provides a random representation of insertions in 99 % of all MAP genes. Analysis of the MAP K-10 genome indicated that 710 of all ORFs do not possess IS recognition sites, while only 37 do not have the recognition site for MycoMarT7. Thus, a significant number of MAP genes remain underrepresented in insertion libraries from IS-derived transposons. Analysis of MycoMarT7 and Tn mutants showed that Tn has a predilection to insert within intergenic regions, suggesting that MycoMarT7 is the more adequate for generating a comprehensive library. However, we uncovered the novel finding that both transposons have loci-dependent biases, with Tn being the most skewed. These loci-dependent transposition biases led to an underestimation of the number of independent mutants required to generate a comprehensive mutant library, leading to an overestimation of essential genes. Herein, we also demonstrated a useful platform for gene discovery and analysis by isolating three novel mutants for each transposon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000258
2016-04-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/4/633.html?itemId=/content/journal/micro/10.1099/mic.0.000258&mimeType=html&fmt=ahah

References

  1. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.. 2006; Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol2:0008 [CrossRef][PubMed]
    [Google Scholar]
  2. Bannantine J. P., Paustian M. L.. 2006; Identification of diagnostic proteins in Mycobacterium avium subspecies paratuberculosis by a whole genome analysis approach. Methods Mol Biol345:185–196[PubMed]
    [Google Scholar]
  3. Bannantine J. P., Hines M. E. II, Bermudez L. E., Talaat A. M., Sreevatsan S., Stabel J. R., Chang Y. F., Coussens P. M., Barletta R. G., other authors. 2014; A rational framework for evaluating the next generation of vaccines against Mycobacterium avium subspecies paratuberculosis. Front Cell Infect Microbiol4:126 [CrossRef][PubMed]
    [Google Scholar]
  4. Bardarov S., Kriakov J., Carriere C., Yu S., Vaamonde C., McAdam R. A., Bloom B. R., Hatfull G. F., Jacobs W. R. Jr.. 1997; Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A94:10961–10966 [CrossRef][PubMed]
    [Google Scholar]
  5. Braunstein M., Bardarov S. S., Jacobs W. R. Jr.. 2002; Genetic methods for deciphering virulence determinants of Mycobacterium tuberculosis. Methods Enzymol358:67–99 [CrossRef][PubMed]
    [Google Scholar]
  6. Cavaignac S. M., White S. J., de Lisle G. W., Collins D. M.. 2000; Construction and screening of Mycobacterium paratuberculosis insertional mutant libraries. Arch Microbiol173:229–231 [CrossRef][PubMed]
    [Google Scholar]
  7. Chacon O., Barletta R. G.. 2010; Molecular genetics of Mycobacterium avium subsp paratuberculosis. In Paratuberculosis: Organism, Disease, Control pp83–93 Edited by Behr M. A., Collins D. M.. Wallingford: CABI; [CrossRef]
    [Google Scholar]
  8. Chacon O., Bermudez L. E., Barletta R. G.. 2004; Johne's disease, inflammatory bowel disease, and Mycobacterium paratuberculosis. Annu Rev Microbiol58:329–363 [CrossRef][PubMed]
    [Google Scholar]
  9. Cirillo J. D., Barletta R. G., Bloom B. R., Jacobs W.R., Jr.. 1991; A novel transposon trap for mycobacteria: isolation and characterization of IS1096. J Bacteriol173:7772–7780[PubMed]
    [Google Scholar]
  10. Foley-Thomas E. M., Whipple D. L., Bermudez L. E., Barletta R. G.. 1995; Phage infection, transfection and transformation of Mycobacterium avium complex and Mycobacterium paratuberculosis. Microbiology141:1173–1181 [CrossRef][PubMed]
    [Google Scholar]
  11. Griffin J. E., Gawronski J. D., Dejesus M. A., Ioerger T. R., Akerley B. J., Sassetti C. M.. 2011; High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog7:e1002251 [CrossRef][PubMed]
    [Google Scholar]
  12. Harris N. B., Feng Z., Liu X., Cirillo S. L., Cirillo J. D., Barletta R. G.. 1999; Development of a transposon mutagenesis system for Mycobacterium avium subsp. paratuberculosis. FEMS Microbiol Lett175:21–26 [CrossRef][PubMed]
    [Google Scholar]
  13. Kana B. D., Gordhan B. G., Downing K. J., Sung N., Vostroktunova G., Machowski E. E., Tsenova L., Young M., Kaprelyants A., other authors. 2008; The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro. Mol Microbiol67:672–684 [CrossRef][PubMed]
    [Google Scholar]
  14. Knuth K., Niesalla H., Hueck C. J., Fuchs T. M.. 2004; Large-scale identification of essential Salmonella genes by trapping lethal insertions. Mol Microbiol51:1729–1744 [CrossRef][PubMed]
    [Google Scholar]
  15. Kobayashi K., Ehrlich S. D., Albertini A., Amati G., Andersen K. K., Arnaud M., Asai K., Ashikaga S., Aymerich S., other authors. 2003; Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A100:4678–4683 [CrossRef][PubMed]
    [Google Scholar]
  16. Lamichhane G., Zignol M., Blades N. J., Geiman D. E., Dougherty A., Grosset J., Broman K. W., Bishai W. R.. 2003; A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A100:7213–7218 [CrossRef][PubMed]
    [Google Scholar]
  17. Lee C. H., Bhagwat A., Heffron F.. 1983; Identification of a transposon Tn3 sequence required for transposition immunity. Proc Natl Acad Sci U S A80:6765–6769 [CrossRef][PubMed]
    [Google Scholar]
  18. Li L., Bannantine J. P., Zhang Q., Amonsin A., May B. J., Alt D., Banerji N., Kanjilal S., Kapur V.. 2005; The complete genome sequence of Mycobacterium avium subspecies paratuberculosis. Proc Natl Acad Sci U S A102:12344–12349 [CrossRef][PubMed]
    [Google Scholar]
  19. McAdam R. A., Quan S., Smith D. A., Bardarov S., Betts J. C., Cook F. C., Hooker E. U., Lewis A. P., Woollard P., other authors. 2002; Characterization of a Mycobacterium tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered virulence. Microbiology148:2975–2986 [CrossRef][PubMed]
    [Google Scholar]
  20. Park K. T., Dahl J. L., Bannantine J. P., Barletta R. G., Ahn J., Allen A. J., Hamilton M. J., Davis W. C.. 2008; Demonstration of allelic exchange in the slow-growing bacterium Mycobacterium avium subsp. paratuberculosis, and generation of mutants with deletions at the pknG, relA, and lsr2 loci. Appl Environ Microbiol74:1687–1695 [CrossRef][PubMed]
    [Google Scholar]
  21. Plasterk R. H., Izsvák Z., Ivics Z.. 1999; Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet15:326–332 [CrossRef][PubMed]
    [Google Scholar]
  22. Rathnaiah G., Lamont E. A., Harris N. B., Fenton R. J., Zinniel D. K., Liu X., Sotos J., Feng Z., Livneh-Kol A., other authors. 2014; Generation and screening of a comprehensive Mycobacterium avium subsp. paratuberculosis transposon mutant bank. Front Cell Infect Microbiol4:144 [CrossRef][PubMed]
    [Google Scholar]
  23. Rengarajan J., Bloom B. R., Rubin E. J.. 2005; Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A102:8327–8332 [CrossRef][PubMed]
    [Google Scholar]
  24. Ribeiro-Guimarães M. L., Pessolani M. C.. 2007; Comparative genomics of mycobacterial proteases. Microb Pathog43:173–178 [CrossRef][PubMed]
    [Google Scholar]
  25. Rice P., Longden I., Bleasby A.. 2000; EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet16:276–277 [CrossRef][PubMed]
    [Google Scholar]
  26. Rubin E. J., Akerley B. J., Novik V. N., Lampe D. J., Husson R. N., Mekalanos J. J.. 1999; In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A96:1645–1650 [CrossRef][PubMed]
    [Google Scholar]
  27. Sassetti C. M., Boyd D. H., Rubin E. J.. 2001; Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci U S A98:12712–12717 [CrossRef][PubMed]
    [Google Scholar]
  28. Sassetti C. M., Boyd D. H., Rubin E. J.. 2003; Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol48:77–84 [CrossRef][PubMed]
    [Google Scholar]
  29. Scandurra G. M., Young M., de Lisle G. W., Collins D. M.. 2009; A bovine macrophage screening system for identifying attenuated transposon mutants of Mycobacterium avium subsp. paratuberculosis with vaccine potential. J Microbiol Methods77:58–62 [CrossRef][PubMed]
    [Google Scholar]
  30. Shin S. J., Wu C. W., Steinberg H., Talaat A. M.. 2006; Identification of novel virulence determinants in Mycobacterium paratuberculosis by screening a library of insertional mutants. Infect Immun74:3825–3833 [CrossRef][PubMed]
    [Google Scholar]
  31. Stabel J. R.. 1998; Johne's disease: a hidden threat. J Dairy Sci81:283–288 [CrossRef][PubMed]
    [Google Scholar]
  32. Sweeney R. W.. 1996; Transmission of paratuberculosis. Vet Clin North Am Food Anim Pract12:305–312 [CrossRef][PubMed]
    [Google Scholar]
  33. Tufariello J. M., Jacobs W. R. Jr., Chan J.. 2004; Individual Mycobacterium tuberculosis resuscitation-promoting factor homologues are dispensable for growth in vitro and in vivo. Infect Immun72:515–526 [CrossRef][PubMed]
    [Google Scholar]
  34. Wang J., Pritchard J. R., Kreitmann L., Montpetit A., Behr M. A.. 2014; Disruption of Mycobacterium avium subsp. paratuberculosis-specific genes impairs in vivo fitness. BMC Genomics15:415 [CrossRef][PubMed]
    [Google Scholar]
  35. Zhang Y. J., Ioerger T. R., Huttenhower C., Long J. E., Sassetti C. M., Sacchettini J. C., Rubin E. J.. 2012; Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Pathog8:e1002946 [CrossRef][PubMed]
    [Google Scholar]
  36. Zvi A., Ariel N., Fulkerson J., Sadoff J. C., Shafferman A.. 2008; Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses. BMC Med Genomics1:18 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000258
Loading
/content/journal/micro/10.1099/mic.0.000258
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error