Copper resistance and its regulation in the sulfate-reducing bacterium sp. OT Free

Abstract

sp. OT is a Gram-positive, acidophilic sulfate-reducing firmicute isolated from copper tailings sediment in the Norilsk mining-smelting area in Siberia and represents the first species whose genome has been sequenced. sp. OT is exceptionally copper resistant, which made it of interest to study the resistance mechanism. It possesses a operon which is shown here to be involved in copper resistance. The gene encodes a CsoR-type homotetrameric repressor. By electrophoretic mobility shift assay, it was shown that CopU binds to the operator/promoter region of the operon in the absence of copper and is released from the DNA by Cu or Ag, implying that CopU regulates the operon in a copper/silver-dependent manner. DOT_CopA is a P1B-type ATPase related to other characterized, bacterial copper ATPases. When expressed in a copper-sensitive Δ mutant, it restores copper resistance to WT levels. His-tagged DOT_CopA was expressed from a plasmid in and purified by Ni-NTA affinity chromatography. The purified enzyme was most active in the presence of Cu(I) and bacterial phospholipids. These findings indicate that the operon confers copper resistance to sp. OT, but do not per se explain the basis of the high copper resistance of this strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000256
2016-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/4/684.html?itemId=/content/journal/micro/10.1099/mic.0.000256&mimeType=html&fmt=ahah

References

  1. Abicht H. K., Mancini S., Karnachuk O. V., Solioz M. 2011; Genome sequence of Desulfosporosinus sp. OT, an acidophilic sulfate-reducing bacterium from copper mining waste in Norilsk, Northern Siberia. J Bacteriol 193:6104–6105 [View Article][PubMed]
    [Google Scholar]
  2. Abicht H. K., Gonskikh Y., Gerber S. D., Solioz M. 2013; Non-enzymic copper reduction by menaquinone enhances copper toxicity in Lactococcus lactis IL1403. Microbiology 159:1190–1197 [View Article][PubMed]
    [Google Scholar]
  3. Ames G. F. 1968; Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol 95:833–843[PubMed]
    [Google Scholar]
  4. Apell H.-J., Solioz M. 1990; Electrogenic transport by the Enterococcus hirae ATPase. Biochim Biophys Acta 1017:221–228 [View Article][PubMed]
    [Google Scholar]
  5. Argüello J. M., González-Guerrero M. 2008; Cu+-ATPases brake system. Structure 16:833–834 [View Article][PubMed]
    [Google Scholar]
  6. Argüello J. M., Eren E., González-Guerrero M. 2007; The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233–248 [View Article][PubMed]
    [Google Scholar]
  7. Ausubel R. M., Brent R., Kingston R. E., Moore D. D., Smith J. A., Struhl K. (editors) 1995 Current Protocols in Molecular Biology New York, NY: Wiley;
    [Google Scholar]
  8. Azzouzi A., Steunou A. S., Durand A., Khalfaoui-Hassani B., Bourbon M. L., Astier C., Bollivar D. W., Ouchane S. 2013; Coproporphyrin III excretion identifies the anaerobic coproporphyrinogen III oxidase HemN as a copper target in the Cu+-ATPase mutant copA−  of Rubrivivax gelatinosus . Mol Microbiol 88:339–351 [View Article][PubMed]
    [Google Scholar]
  9. Boal A. K., Rosenzweig A. C. 2009; Structural biology of copper trafficking. Chem Rev 109:4760–4779 [View Article][PubMed]
    [Google Scholar]
  10. Bondarczuk K., Piotrowska-Seget Z. 2013; Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol Toxicol 29:397–405 [View Article][PubMed]
    [Google Scholar]
  11. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  12. Chang F. M., Coyne H. J., Cubillas C., Vinuesa P., Fang X., Ma Z., Ma D., Helmann J.D.,, García-de los Santos A., other authors. 2014; Cu(I)-mediated allosteric switching in a copper-sensing operon repressor (CsoR). J Biol Chem 289:19204–19217 [View Article][PubMed]
    [Google Scholar]
  13. Chang F. M., Martin J. E., Giedroc D. P. 2015; Electrostatic occlusion and quaternary structural ion pairing are key determinants of Cu(I)-mediated allostery in the copper-sensing operon repressor (CsoR). Biochemistry 54:2463–2472 [View Article][PubMed]
    [Google Scholar]
  14. Chaplin A. K., Tan B. G., Vijgenboom E., Worrall J. A. 2015; Copper trafficking in the CsoR regulon of Streptomyces lividans . Metallomics 7:145–155 [View Article][PubMed]
    [Google Scholar]
  15. Chillappagari S., Seubert A., Trip H., Kuipers O. P., Marahiel M. A., Miethke M. 2010; Copper stress affects iron homeostasis by destabilizing iron–sulfur cluster formation in Bacillus subtilis . J Bacteriol 192:2512–2524 [View Article][PubMed]
    [Google Scholar]
  16. Dupont C. L., Grass G., Rensing C. 2011; Copper toxicity and the origin of bacterial resistance – new insights and applications. Metallomics 3:1109–1118 [View Article][PubMed]
    [Google Scholar]
  17. Fan B., Grass G., Rensing C., Rosen B. P. 2001; Escherichia coli CopA N-terminal Cys(X)2Cys motifs are not required for copper resistance or transport. Biochem Biophys Res Commun 286:414–418 [View Article][PubMed]
    [Google Scholar]
  18. Foster A. W., Dainty S. J., Patterson C. J., Pohl E., Blackburn H., Wilson C., Hess C. R., Rutherford J. C., Quaranta L., other authors. 2014; A chemical potentiator of copper-accumulation used to investigate the iron-regulons of Saccharomyces cerevisiae . Mol Microbiol 93:317–330 [View Article][PubMed]
    [Google Scholar]
  19. Fung D. K., Lau W. Y., Chan W. T., Yan A. 2013; Copper efflux is induced during anaerobic amino acid limitation in Escherichia coli to protect iron-sulfur cluster enzymes and biogenesis. J Bacteriol 195:4556–4568 [View Article][PubMed]
    [Google Scholar]
  20. Gourdon P., Liu X. Y., Skjørringe T., Morth J. P., Møller L. B., Pedersen B. P., Nissen P. 2011; Crystal structure of a copper-transporting PIB-type ATPase. Nature 475:59–64 [View Article][PubMed]
    [Google Scholar]
  21. Grass G., Fan B., Rosen B. P., Lemke K., Schlegel H. G., Rensing C. 2001; NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance. J Bacteriol 183:2803–2807 [View Article][PubMed]
    [Google Scholar]
  22. Higgins K. A., Giedroc D. 2014; Insights into protein allostery in the CsoR/RcnR family of transcriptional repressors. Chem Lett 43:20–25 [View Article][PubMed]
    [Google Scholar]
  23. Jacobs A. D., Chang F. M., Morrison L., Dilger J. M., Wysocki V. H., Clemmer D. E., Giedroc D. P. 2015; Resolution of stepwise cooperativities of copper binding by the homotetrameric copper-sensitive operon repressor (CsoR): impact on structure and stability. Angew Chem Int Ed Engl 54:12795–12799 [View Article][PubMed]
    [Google Scholar]
  24. Karnachuk O. V., Pimenov N. V., Yusupov S. K., Frank Y. A., Kaksonen A. H., Puhakka J. A., Ivanov M. V., Lindström E. B., Tuovinen O. H. 2005; Sulfate reduction potential in sediments in the Norilsk Mining area, Northern Siberia. Geomicrobiol J 22:11–25 [View Article]
    [Google Scholar]
  25. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  26. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. 1979; An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95–97 [View Article][PubMed]
    [Google Scholar]
  27. Liu T., Ramesh A., Ma Z., Ward S. K., Zhang L., George G. N., Talaat A. M., Sacchettini J. C., Giedroc D. P. 2007; CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol 3:60–68 [View Article][PubMed]
    [Google Scholar]
  28. Lutsenko S., Kaplan J. H. 1995; Organization of P-type ATPases: significance of structural diversity. Biochemistry 34:15607–15613 [View Article][PubMed]
    [Google Scholar]
  29. Lutsenko S., LeShane E. S., Shinde U. 2007; Biochemical basis of regulation of human copper-transporting ATPases. Arch Biochem Biophys 463:134–148 [View Article][PubMed]
    [Google Scholar]
  30. Macomber L., Imlay J. A. 2009; The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 106:8344–8349 [View Article][PubMed]
    [Google Scholar]
  31. Macomber L., Rensing C., Imlay J. A. 2007; Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli . J Bacteriol 189:1616–1626 [View Article][PubMed]
    [Google Scholar]
  32. Magnani D., Barré O., Gerber S. D., Solioz M. 2008; Characterization of the CopR regulon of Lactococcus lactis IL1403. J Bacteriol 190:536–545 [View Article][PubMed]
    [Google Scholar]
  33. Mandal A. K., Yang Y., Kertesz T. M., Argüello J. M. 2004; Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases. J Biol Chem 279:54802–54807 [View Article][PubMed]
    [Google Scholar]
  34. Migocka M., Posyniak E., Maciaszczyk-Dziubinska E., Papierniak A., Kosieradzaka A. 2015; Functional and biochemical characterization of cucumber genes encoding two copper ATPases CsHMA5.1 and CsHMA5.2. J Biol Chem 290:15717–15729 [View Article][PubMed]
    [Google Scholar]
  35. Odermatt A., Suter H., Krapf R., Solioz M. 1993; Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae . J Biol Chem 268:12775–12779[PubMed]
    [Google Scholar]
  36. Osman D., Cavet J. S. 2008; Copper homeostasis in bacteria. Adv Appl Microbiol 65:217–247 [View Article][PubMed]
    [Google Scholar]
  37. Outten F. W., Huffman D. L., Hale J. A., O'Halloran T. V. 2001; The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli . J Biol Chem 276:30670–30677 [View Article][PubMed]
    [Google Scholar]
  38. Portmann R., Solioz M. 2005; Purification and functional reconstitution of the human Wilson copper ATPase, ATP7B. FEBS Lett 579:3589–3595 [View Article][PubMed]
    [Google Scholar]
  39. Portmann R., Poulsen K. R., Wimmer R., Solioz M. 2006; CopY-like copper inducible repressors are putative ‘winged helix’ proteins. Biometals 19:61–70 [CrossRef]
    [Google Scholar]
  40. Porto T. V., Hough M. A., Worrall J. A. 2015; Structural insights into conformational switching in the copper metalloregulator CsoR from Streptomyces lividans . Acta Crystallogr D Biol Crystallogr 71:1872–1878 [View Article][PubMed]
    [Google Scholar]
  41. Raimunda D., González-Guerrero M., Leeber B. W. III, Argüello J. M. 2011; The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. Biometals 24:467–475 [View Article][PubMed]
    [Google Scholar]
  42. Rensing C., Fan B., Sharma R., Mitra B., Rosen B. P. 2000; CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A 97:652–656 [View Article][PubMed]
    [Google Scholar]
  43. Smaldone G. T., Helmann J. D. 2007; CsoR regulates the copper efflux operon copZA in Bacillus subtilis . Microbiology 153:4123–4128 [View Article][PubMed]
    [Google Scholar]
  44. Smith A. T., Smith K. P., Rosenzweig A. C. 2014; Diversity of the metal-transporting P1B-type ATPases. J Biol Inorg Chem 19:947–960 [View Article][PubMed]
    [Google Scholar]
  45. Solioz M., Odermatt A., Krapf R. 1994; Copper pumping ATPases: common concepts in bacteria and man. FEBS Lett 346:44–47 [View Article][PubMed]
    [Google Scholar]
  46. Solioz M., Abicht H. K., Mermod M., Mancini S. 2010; Response of Gram-positive bacteria to copper stress. J Biol Inorg Chem 15:3–14 [View Article][PubMed]
    [Google Scholar]
  47. Teramoto H., Inui M., Yukawa H. 2012; Corynebacterium glutamicum CsoR acts as a transcriptional repressor of two copper/zinc-inducible P1B-type ATPase operons. Biosci Biotechnol Biochem 76:1952–1958 [View Article][PubMed]
    [Google Scholar]
  48. Webb J. S., McGinness S., Lappin-Scott H. M. 1998; Metal removal by sulphate-reducing bacteria from natural and constructed wetlands. J Appl Microbiol 84:240–248 [View Article][PubMed]
    [Google Scholar]
  49. White C., Sayer J. A., Gadd G. M. 1997; Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev 20:503–516 [View Article][PubMed]
    [Google Scholar]
  50. Wunderli-Ye H., Solioz M. 2001; Purification and functional analysis of the copper ATPase CopA of Enterococcus hirae . Biochem Biophys Res Commun 280:713–719 [View Article][PubMed]
    [Google Scholar]
  51. Wyler-Duda P., Solioz M. 1996; Phosphoenzyme formation by purified, reconstituted copper ATPase of Enterococcus hirae . FEBS Lett 399:143–146 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000256
Loading
/content/journal/micro/10.1099/mic.0.000256
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed