1887

Abstract

sp. OT is a Gram-positive, acidophilic sulfate-reducing firmicute isolated from copper tailings sediment in the Norilsk mining-smelting area in Siberia and represents the first species whose genome has been sequenced. sp. OT is exceptionally copper resistant, which made it of interest to study the resistance mechanism. It possesses a operon which is shown here to be involved in copper resistance. The gene encodes a CsoR-type homotetrameric repressor. By electrophoretic mobility shift assay, it was shown that CopU binds to the operator/promoter region of the operon in the absence of copper and is released from the DNA by Cu or Ag, implying that CopU regulates the operon in a copper/silver-dependent manner. DOT_CopA is a P1B-type ATPase related to other characterized, bacterial copper ATPases. When expressed in a copper-sensitive Δ mutant, it restores copper resistance to WT levels. His-tagged DOT_CopA was expressed from a plasmid in and purified by Ni-NTA affinity chromatography. The purified enzyme was most active in the presence of Cu(I) and bacterial phospholipids. These findings indicate that the operon confers copper resistance to sp. OT, but do not per se explain the basis of the high copper resistance of this strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000256
2016-04-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/4/684.html?itemId=/content/journal/micro/10.1099/mic.0.000256&mimeType=html&fmt=ahah

References

  1. Abicht H. K. , Mancini S. , Karnachuk O. V. , Solioz M. . ( 2011;). Genome sequence of Desulfosporosinus sp. OT, an acidophilic sulfate-reducing bacterium from copper mining waste in Norilsk, Northern Siberia. J Bacteriol 193: 6104–6105 [CrossRef] [PubMed].
    [Google Scholar]
  2. Abicht H. K. , Gonskikh Y. , Gerber S. D. , Solioz M. . ( 2013;). Non-enzymic copper reduction by menaquinone enhances copper toxicity in Lactococcus lactis IL1403. Microbiology 159: 1190–1197 [CrossRef] [PubMed].
    [Google Scholar]
  3. Ames G. F. . ( 1968;). Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol 95: 833–843 [PubMed].
    [Google Scholar]
  4. Apell H.-J. , Solioz M. . ( 1990;). Electrogenic transport by the Enterococcus hirae ATPase. Biochim Biophys Acta 1017: 221–228 [CrossRef] [PubMed].
    [Google Scholar]
  5. Argüello J. M. , González-Guerrero M. . ( 2008;). Cu+-ATPases brake system. Structure 16: 833–834 [CrossRef] [PubMed].
    [Google Scholar]
  6. Argüello J. M. , Eren E. , González-Guerrero M. . ( 2007;). The structure and function of heavy metal transport P1B-ATPases. Biometals 20: 233–248 [CrossRef] [PubMed].
    [Google Scholar]
  7. Ausubel R. M. , Brent R. , Kingston R. E. , Moore D. D. , Smith J. A. , Struhl K. . (editors) ( 1995;). Current Protocols in Molecular Biology New York, NY: Wiley;.
    [Google Scholar]
  8. Azzouzi A. , Steunou A. S. , Durand A. , Khalfaoui-Hassani B. , Bourbon M. L. , Astier C. , Bollivar D. W. , Ouchane S. . ( 2013;). Coproporphyrin III excretion identifies the anaerobic coproporphyrinogen III oxidase HemN as a copper target in the Cu+-ATPase mutant copA−  of Rubrivivax gelatinosus . Mol Microbiol 88: 339–351 [CrossRef] [PubMed].
    [Google Scholar]
  9. Boal A. K. , Rosenzweig A. C. . ( 2009;). Structural biology of copper trafficking. Chem Rev 109: 4760–4779 [CrossRef] [PubMed].
    [Google Scholar]
  10. Bondarczuk K. , Piotrowska-Seget Z. . ( 2013;). Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol Toxicol 29: 397–405 [CrossRef] [PubMed].
    [Google Scholar]
  11. Bradford M. M. . ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254 [CrossRef] [PubMed].
    [Google Scholar]
  12. Chang F. M. , Coyne H. J. , Cubillas C. , Vinuesa P. , Fang X. , Ma Z. , Ma D. , Helmann J.D., , García-de los Santos A. , other authors . ( 2014;). Cu(I)-mediated allosteric switching in a copper-sensing operon repressor (CsoR). J Biol Chem 289: 19204–19217 [CrossRef] [PubMed].
    [Google Scholar]
  13. Chang F. M. , Martin J. E. , Giedroc D. P. . ( 2015;). Electrostatic occlusion and quaternary structural ion pairing are key determinants of Cu(I)-mediated allostery in the copper-sensing operon repressor (CsoR). Biochemistry 54: 2463–2472 [CrossRef] [PubMed].
    [Google Scholar]
  14. Chaplin A. K. , Tan B. G. , Vijgenboom E. , Worrall J. A. . ( 2015;). Copper trafficking in the CsoR regulon of Streptomyces lividans . Metallomics 7: 145–155 [CrossRef] [PubMed].
    [Google Scholar]
  15. Chillappagari S. , Seubert A. , Trip H. , Kuipers O. P. , Marahiel M. A. , Miethke M. . ( 2010;). Copper stress affects iron homeostasis by destabilizing iron–sulfur cluster formation in Bacillus subtilis . J Bacteriol 192: 2512–2524 [CrossRef] [PubMed].
    [Google Scholar]
  16. Dupont C. L. , Grass G. , Rensing C. . ( 2011;). Copper toxicity and the origin of bacterial resistance – new insights and applications. Metallomics 3: 1109–1118 [CrossRef] [PubMed].
    [Google Scholar]
  17. Fan B. , Grass G. , Rensing C. , Rosen B. P. . ( 2001;). Escherichia coli CopA N-terminal Cys(X)2Cys motifs are not required for copper resistance or transport. Biochem Biophys Res Commun 286: 414–418 [CrossRef] [PubMed].
    [Google Scholar]
  18. Foster A. W. , Dainty S. J. , Patterson C. J. , Pohl E. , Blackburn H. , Wilson C. , Hess C. R. , Rutherford J. C. , Quaranta L. , other authors . ( 2014;). A chemical potentiator of copper-accumulation used to investigate the iron-regulons of Saccharomyces cerevisiae . Mol Microbiol 93: 317–330 [CrossRef] [PubMed].
    [Google Scholar]
  19. Fung D. K. , Lau W. Y. , Chan W. T. , Yan A. . ( 2013;). Copper efflux is induced during anaerobic amino acid limitation in Escherichia coli to protect iron-sulfur cluster enzymes and biogenesis. J Bacteriol 195: 4556–4568 [CrossRef] [PubMed].
    [Google Scholar]
  20. Gourdon P. , Liu X. Y. , Skjørringe T. , Morth J. P. , Møller L. B. , Pedersen B. P. , Nissen P. . ( 2011;). Crystal structure of a copper-transporting PIB-type ATPase. Nature 475: 59–64 [CrossRef] [PubMed].
    [Google Scholar]
  21. Grass G. , Fan B. , Rosen B. P. , Lemke K. , Schlegel H. G. , Rensing C. . ( 2001;). NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance. J Bacteriol 183: 2803–2807 [CrossRef] [PubMed].
    [Google Scholar]
  22. Higgins K. A. , Giedroc D. . ( 2014;). Insights into protein allostery in the CsoR/RcnR family of transcriptional repressors. Chem Lett 43: 20–25 [CrossRef] [PubMed].
    [Google Scholar]
  23. Jacobs A. D. , Chang F. M. , Morrison L. , Dilger J. M. , Wysocki V. H. , Clemmer D. E. , Giedroc D. P. . ( 2015;). Resolution of stepwise cooperativities of copper binding by the homotetrameric copper-sensitive operon repressor (CsoR): impact on structure and stability. Angew Chem Int Ed Engl 54: 12795–12799 [CrossRef] [PubMed].
    [Google Scholar]
  24. Karnachuk O. V. , Pimenov N. V. , Yusupov S. K. , Frank Y. A. , Kaksonen A. H. , Puhakka J. A. , Ivanov M. V. , Lindström E. B. , Tuovinen O. H. . ( 2005;). Sulfate reduction potential in sediments in the Norilsk Mining area, Northern Siberia. Geomicrobiol J 22: 11–25 [CrossRef].
    [Google Scholar]
  25. Laemmli U. K. . ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 [CrossRef] [PubMed].
    [Google Scholar]
  26. Lanzetta P. A. , Alvarez L. J. , Reinach P. S. , Candia O. A. . ( 1979;). An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100: 95–97 [CrossRef] [PubMed].
    [Google Scholar]
  27. Liu T. , Ramesh A. , Ma Z. , Ward S. K. , Zhang L. , George G. N. , Talaat A. M. , Sacchettini J. C. , Giedroc D. P. . ( 2007;). CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol 3: 60–68 [CrossRef] [PubMed].
    [Google Scholar]
  28. Lutsenko S. , Kaplan J. H. . ( 1995;). Organization of P-type ATPases: significance of structural diversity. Biochemistry 34: 15607–15613 [CrossRef] [PubMed].
    [Google Scholar]
  29. Lutsenko S. , LeShane E. S. , Shinde U. . ( 2007;). Biochemical basis of regulation of human copper-transporting ATPases. Arch Biochem Biophys 463: 134–148 [CrossRef] [PubMed].
    [Google Scholar]
  30. Macomber L. , Imlay J. A. . ( 2009;). The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 106: 8344–8349 [CrossRef] [PubMed].
    [Google Scholar]
  31. Macomber L. , Rensing C. , Imlay J. A. . ( 2007;). Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli . J Bacteriol 189: 1616–1626 [CrossRef] [PubMed].
    [Google Scholar]
  32. Magnani D. , Barré O. , Gerber S. D. , Solioz M. . ( 2008;). Characterization of the CopR regulon of Lactococcus lactis IL1403. J Bacteriol 190: 536–545 [CrossRef] [PubMed].
    [Google Scholar]
  33. Mandal A. K. , Yang Y. , Kertesz T. M. , Argüello J. M. . ( 2004;). Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases. J Biol Chem 279: 54802–54807 [CrossRef] [PubMed].
    [Google Scholar]
  34. Migocka M. , Posyniak E. , Maciaszczyk-Dziubinska E. , Papierniak A. , Kosieradzaka A. . ( 2015;). Functional and biochemical characterization of cucumber genes encoding two copper ATPases CsHMA5.1 and CsHMA5.2. J Biol Chem 290: 15717–15729 [CrossRef] [PubMed].
    [Google Scholar]
  35. Odermatt A. , Suter H. , Krapf R. , Solioz M. . ( 1993;). Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae . J Biol Chem 268: 12775–12779 [PubMed].
    [Google Scholar]
  36. Osman D. , Cavet J. S. . ( 2008;). Copper homeostasis in bacteria. Adv Appl Microbiol 65: 217–247 [CrossRef] [PubMed].
    [Google Scholar]
  37. Outten F. W. , Huffman D. L. , Hale J. A. , O'Halloran T. V. . ( 2001;). The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli . J Biol Chem 276: 30670–30677 [CrossRef] [PubMed].
    [Google Scholar]
  38. Portmann R. , Solioz M. . ( 2005;). Purification and functional reconstitution of the human Wilson copper ATPase, ATP7B. FEBS Lett 579: 3589–3595 [CrossRef] [PubMed].
    [Google Scholar]
  39. Portmann R. , Poulsen K. R. , Wimmer R. , Solioz M. . ( 2006;). CopY-like copper inducible repressors are putative ‘winged helix’ proteins. Biometals 19: 61–70.[CrossRef]
    [Google Scholar]
  40. Porto T. V. , Hough M. A. , Worrall J. A. . ( 2015;). Structural insights into conformational switching in the copper metalloregulator CsoR from Streptomyces lividans . Acta Crystallogr D Biol Crystallogr 71: 1872–1878 [CrossRef] [PubMed].
    [Google Scholar]
  41. Raimunda D. , González-Guerrero M. , Leeber B. W. III , Argüello J. M. . ( 2011;). The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. Biometals 24: 467–475 [CrossRef] [PubMed].
    [Google Scholar]
  42. Rensing C. , Fan B. , Sharma R. , Mitra B. , Rosen B. P. . ( 2000;). CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A 97: 652–656 [CrossRef] [PubMed].
    [Google Scholar]
  43. Smaldone G. T. , Helmann J. D. . ( 2007;). CsoR regulates the copper efflux operon copZA in Bacillus subtilis . Microbiology 153: 4123–4128 [CrossRef] [PubMed].
    [Google Scholar]
  44. Smith A. T. , Smith K. P. , Rosenzweig A. C. . ( 2014;). Diversity of the metal-transporting P1B-type ATPases. J Biol Inorg Chem 19: 947–960 [CrossRef] [PubMed].
    [Google Scholar]
  45. Solioz M. , Odermatt A. , Krapf R. . ( 1994;). Copper pumping ATPases: common concepts in bacteria and man. FEBS Lett 346: 44–47 [CrossRef] [PubMed].
    [Google Scholar]
  46. Solioz M. , Abicht H. K. , Mermod M. , Mancini S. . ( 2010;). Response of Gram-positive bacteria to copper stress. J Biol Inorg Chem 15: 3–14 [CrossRef] [PubMed].
    [Google Scholar]
  47. Teramoto H. , Inui M. , Yukawa H. . ( 2012;). Corynebacterium glutamicum CsoR acts as a transcriptional repressor of two copper/zinc-inducible P1B-type ATPase operons. Biosci Biotechnol Biochem 76: 1952–1958 [CrossRef] [PubMed].
    [Google Scholar]
  48. Webb J. S. , McGinness S. , Lappin-Scott H. M. . ( 1998;). Metal removal by sulphate-reducing bacteria from natural and constructed wetlands. J Appl Microbiol 84: 240–248 [CrossRef] [PubMed].
    [Google Scholar]
  49. White C. , Sayer J. A. , Gadd G. M. . ( 1997;). Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev 20: 503–516 [CrossRef] [PubMed].
    [Google Scholar]
  50. Wunderli-Ye H. , Solioz M. . ( 2001;). Purification and functional analysis of the copper ATPase CopA of Enterococcus hirae . Biochem Biophys Res Commun 280: 713–719 [CrossRef] [PubMed].
    [Google Scholar]
  51. Wyler-Duda P. , Solioz M. . ( 1996;). Phosphoenzyme formation by purified, reconstituted copper ATPase of Enterococcus hirae . FEBS Lett 399: 143–146 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000256
Loading
/content/journal/micro/10.1099/mic.0.000256
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error