1887

Abstract

In pathogenic species the type IV pili (Tfp) are of primary importance in host–pathogen interactions. Tfp mediate initial bacterial attachment to cell surfaces and formation of microcolonies via pilus–pilus interactions. Based on genome analysis, many non-pathogenic species are predicted to express Tfp, but aside from studies on , relatively little is known about the formation and function of pili in these organisms. Here, we have analysed pilin expression and the role of Tfp in . This non-pathogenic species shares a close taxonomic relationship to the pathogen and also colonizes the human oropharyngeal cavity. Through analysis of non-pathogenic genomes we identified two genes with homology to , which encodes the major pilin of . We show which of the two genes is required for Tfp expression in and that Tfp in this species are required for DNA competence, similar to other . However, in contrast to the meningococcus, deletion of the pilin gene did not impact the association of to human epithelial cells, demonstrating that isolates can adhere to human epithelial cells by Tfp-independent mechanisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000248
2016-03-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/3/487.html?itemId=/content/journal/micro/10.1099/mic.0.000248&mimeType=html&fmt=ahah

References

  1. Aas F. E. , Wolfgang M. , Frye S. , Dunham S. , Løvold C. , Koomey M. . ( 2002;). Competence for natural transformation in Neisseria gonorrhoeae: components of DNA binding and uptake linked to type IV pilus expression. Mol Microbiol 46: 749–760 [CrossRef] [PubMed].
    [Google Scholar]
  2. Aho E. L. , Murphy G. L. , Cannon J. G. . ( 1987;). Distribution of specific DNA sequences among pathogenic and commensal Neisseria species. Infect Immun 55: 1009–1013 [PubMed].
    [Google Scholar]
  3. Aho E. L. , Botten J. W. , Hall R. J. , Larson M. K. , Ness J. K. . ( 1997;). Characterization of a class II pilin expression locus from Neisseria meningitidis: evidence for increased diversity among pilin genes in pathogenic Neisseria species. Infect Immun 65: 2613–2620 [PubMed].
    [Google Scholar]
  4. Aho E. L. , Keating A. M. , McGillivray S. M. . ( 2000;). A comparative analysis of pilin genes from pathogenic and nonpathogenic Neisseria species. Microb Pathog 28: 81–88 [CrossRef] [PubMed].
    [Google Scholar]
  5. Aho E. L. , Urwin R. , Batcheller A. E. , Holmgren A. M. , Havig K. , Kulakoski A. M. , Vomhof E. E. , Longfors N. S. , Erickson C. B. , other authors . ( 2005;). Neisserial pilin genes display extensive interspecies diversity. FEMS Microbiol Lett 249: 327–334 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bennett J. S. , Thompson E. A. , Kriz P. , Jolley K. A. , Maiden M. C. . ( 2009;). A common gene pool for the Neisseria FetA antigen. Int J Med Microbiol 299: 133–139 [CrossRef] [PubMed].
    [Google Scholar]
  7. Bennett J. S. , Jolley K. A. , Earle S. G. , Corton C. , Bentley S. D. , Parkhill J. , Maiden M. C. . ( 2012;). A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria . Microbiology 158: 1570–1580 [CrossRef] [PubMed].
    [Google Scholar]
  8. Berg L. , Lale R. , Bakke I. , Burroughs N. , Valla S. . ( 2009;). The expression of recombinant genes in Escherichia coli can be strongly stimulated at the transcript production level by mutating the DNA-region corresponding to the 5′-untranslated part of mRNA. Microb Biotechnol 2: 379–389 [CrossRef] [PubMed].
    [Google Scholar]
  9. Berger U. . ( 1962;). [Studies on acid formation by saccharolytic, saprophytic Neisseria]. Arch Hyg Bakteriol 146: 55–60 (in German)[PubMed].
    [Google Scholar]
  10. Berry J. L. , Pelicic V. . ( 2015;). Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol Rev 39: 134–154 [PubMed].
    [Google Scholar]
  11. Bos M. P. , Grunert F. , Belland R. J. . ( 1997;). Differential recognition of members of the carcinoembryonic antigen family by Opa variants of Neisseria gonorrhoeae . Infect Immun 65: 2353–2361 [PubMed].
    [Google Scholar]
  12. Brown D. R. , Helaine S. , Carbonnelle E. , Pelicic V. . ( 2010;). Systematic functional analysis reveals that a set of seven genes is involved in fine-tuning of the multiple functions mediated by type IV pili in Neisseria meningitidis . Infect Immun 78: 3053–3063 [CrossRef] [PubMed].
    [Google Scholar]
  13. Capecchi B. , Adu-Bobie J. , Di Marcello F. , Ciucchi L. , Masignani V. , Taddei A. , Rappuoli R. , Pizza M. , Aricò B. . ( 2005;). Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells. Mol Microbiol 55: 687–698 [CrossRef] [PubMed].
    [Google Scholar]
  14. Carbonnelle E. , Hélaine S. , Prouvensier L. , Nassif X. , Pelicic V. . ( 2005;). Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol Microbiol 55: 54–64 [CrossRef] [PubMed].
    [Google Scholar]
  15. Carbonnelle E. , Helaine S. , Nassif X. , Pelicic V. . ( 2006;). A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. Mol Microbiol 61: 1510–1522 [CrossRef] [PubMed].
    [Google Scholar]
  16. Carbonnelle E. , Hill D. J. , Morand P. , Griffiths N. J. , Bourdoulous S. , Murillo I. , Nassif X. , Virji M. . ( 2009;). Meningococcal interactions with the host. Vaccine 27: (Suppl. 2), B78–B89 [CrossRef] [PubMed].
    [Google Scholar]
  17. Cehovin A. , Winterbotham M. , Lucidarme J. , Borrow R. , Tang C. M. , Exley R. M. , Pelicic V. . ( 2010;). Sequence conservation of pilus subunits in Neisseria meningitidis . Vaccine 28: 4817–4826 [CrossRef] [PubMed].
    [Google Scholar]
  18. Chen I. , Dubnau D. . ( 2004;). DNA uptake during bacterial transformation. Nat Rev Microbiol 2: 241–249 [CrossRef] [PubMed].
    [Google Scholar]
  19. Corcoran C. P. , Podkaminski D. , Papenfort K. , Urban J. H. , Hinton J. C. , Vogel J. . ( 2012;). Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA. Mol Microbiol 84: 428–445 [CrossRef] [PubMed].
    [Google Scholar]
  20. Craig L. , Pique M. E. , Tainer J. A. . ( 2004;). Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2: 363–378 [CrossRef] [PubMed].
    [Google Scholar]
  21. Dalrymple B. , Mattick J. S. . ( 1987;). An analysis of the organization and evolution of type 4 fimbrial (MePhe) subunit proteins. J Mol Evol 25: 261–269 [CrossRef] [PubMed].
    [Google Scholar]
  22. Deal C. D. , Stromberg N. , Nyberg G. , Normark S. , Karlsson K. A. , So M. . ( 1987;). Pilin independent binding of Neisseria gonorrhoeae to immobilized glycolipids. Antonie van Leeuwenhoek 53: 425–430 [CrossRef] [PubMed].
    [Google Scholar]
  23. Deasy A. M. , Guccione E. , Dale A. P. , Andrews N. , Evans C. M. , Bennett J. S. , Bratcher H. B. , Maiden M. C. , Gorringe A. R. , Read R. C. . ( 2015;). Nasal inoculation of the commensal Neisseria lactamica inhibits carriage of Neisseria meningitidis by young adults: a controlled human infection study. Clin Infect Dis 60: 1512–1520 [PubMed].
    [Google Scholar]
  24. Exley R. M. , Sim R. , Goodwin L. , Winterbotham M. , Schneider M. C. , Read R. C. , Tang C. M. . ( 2009;). Identification of meningococcal genes necessary for colonization of human upper airway tissue. Infect Immun 77: 45–51 [CrossRef] [PubMed].
    [Google Scholar]
  25. Gibson D. G. , Young L. , Chuang R. Y. , Venter J. C. , Hutchison C. A. III , Smith H. O. . ( 2009;). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6: 343–345 [CrossRef] [PubMed].
    [Google Scholar]
  26. Gold R. , Goldschneider I. , Lepow M. L. , Draper T. F. , Randolph M. . ( 1978;). Carriage of Neisseria meningitidis and Neisseria lactamica in infants and children. J Infect Dis 137: 112–121 [CrossRef] [PubMed].
    [Google Scholar]
  27. Gómez-Duarte O. G. , Dehio M. , Guzmán C. A. , Chhatwal G. S. , Dehio C. , Meyer T. F. . ( 1997;). Binding of vitronectin to Opa-expressing Neisseria gonorrhoeae mediates invasion of HeLa cells. Infect Immun 65: 3857–3866 [PubMed].
    [Google Scholar]
  28. Green L. R. , Monk P. N. , Partridge L. J. , Morris P. , Gorringe A. R. , Read R. C. . ( 2011;). Cooperative role for tetraspanins in adhesin-mediated attachment of bacterial species to human epithelial cells. Infect Immun 79: 2241–2249 [CrossRef] [PubMed].
    [Google Scholar]
  29. Haas R. , Meyer T. F. . ( 1986;). The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 44: 107–115 [CrossRef] [PubMed].
    [Google Scholar]
  30. Hagblom P. , Segal E. , Billyard E. , So M. . ( 1985;). Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae . Nature 315: 156–158 [CrossRef] [PubMed].
    [Google Scholar]
  31. Hawley D. K. , McClure W. R. . ( 1983;). Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11: 2237–2255 [CrossRef] [PubMed].
    [Google Scholar]
  32. Hélaine S. , Carbonnelle E. , Prouvensier L. , Beretti J. L. , Nassif X. , Pelicic V. . ( 2005;). PilX, a pilus-associated protein essential for bacterial aggregation, is a key to pilus-facilitated attachment of Neisseria meningitidis to human cells. Mol Microbiol 55: 65–77 [CrossRef] [PubMed].
    [Google Scholar]
  33. Higashi D. L. , Biais N. , Weyand N. J. , Agellon A. , Sisko J. L. , Brown L. M. , So M. . ( 2011;). N. elongata produces type IV pili that mediate interspecies gene transfer with N. gonorrhoeae . PLoS One 6: e21373 [CrossRef] [PubMed].
    [Google Scholar]
  34. Horton R. M. , Hunt H. D. , Ho S. N. , Pullen J. K. , Pease L. R. . ( 1989;). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77: 61–68 [CrossRef] [PubMed].
    [Google Scholar]
  35. Hung M. C. , Heckels J. E. , Christodoulides M. . ( 2013;). The adhesin complex protein (ACP) of Neisseria meningitidis is a new adhesin with vaccine potential. MBio 4: e00041-13 [CrossRef] [PubMed].
    [Google Scholar]
  36. Jen F. E. , Warren M. J. , Schulz B. L. , Power P. M. , Swords W. E. , Weiser J. N. , Apicella M. A. , Edwards J. L. , Jennings M. P. . ( 2013;). Dual pili post-translational modifications synergize to mediate meningococcal adherence to platelet activating factor receptor on human airway cells. PLoS Pathog 9: e1003377 [CrossRef] [PubMed].
    [Google Scholar]
  37. Johansson L. , Rytkonen A. , Bergman P. , Albiger B. , Källström H. , Hökfelt T. , Agerberth B. , Cattaneo R. , Jonsson A. B. . ( 2003;). CD46 in meningococcal disease. Science 301: 373–375 [CrossRef] [PubMed].
    [Google Scholar]
  38. Jolley K. A. , Maiden M. C. . ( 2010;). BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11: 595 [CrossRef] [PubMed].
    [Google Scholar]
  39. Källström H. , Liszewski M. K. , Atkinson J. P. , Jonsson A. B. . ( 1997;). Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria . Mol Microbiol 25: 639–647 [CrossRef] [PubMed].
    [Google Scholar]
  40. Kirchner M. , Meyer T. F. . ( 2005;). The PilC adhesin of the Neisseria type IV pilus-binding specificities and new insights into the nature of the host cell receptor. Mol Microbiol 56: 945–957 [CrossRef] [PubMed].
    [Google Scholar]
  41. Knapp J. S. , Hook E. W. III . ( 1988;). Prevalence and persistence of Neisseria cinerea and other Neisseria spp. in adults. J Clin Microbiol 26: 896–900 [PubMed].
    [Google Scholar]
  42. Kraal L. , Abubucker S. , Kota K. , Fischbach M. A. , Mitreva M. . ( 2014;). The prevalence of species and strains in the human microbiome: a resource for experimental efforts. PLoS One 9: e97279 [CrossRef] [PubMed].
    [Google Scholar]
  43. Kristiansen P. A. , Diomandé F. , Ouédraogo R. , Sanou I. , Sangaré L. , Ouédraogo A. S. , Ba A. K. , Kandolo D. , Dolan Thomas J. , other authors . ( 2012;). Carriage of Neisseria lactamica in 1- to 29-year-old people in Burkina Faso: epidemiology and molecular characterization. J Clin Microbiol 50: 4020–4027 [CrossRef] [PubMed].
    [Google Scholar]
  44. Marri P. R. , Paniscus M. , Weyand N. J. , Rendón M. A. , Calton C. M. , Hernández D. R. , Higashi D. L. , Sodergren E. , Weinstock G. M. , other authors . ( 2010;). Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One 5: e11835 [CrossRef] [PubMed].
    [Google Scholar]
  45. Mehr I. J. , Seifert H. S. . ( 1998;). Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol Microbiol 30: 697–710 [CrossRef] [PubMed].
    [Google Scholar]
  46. Merz A. J. , So M. . ( 1997;). Attachment of piliated, Opa- and Opc- gonococci and meningococci to epithelial cells elicits cortical actin rearrangements and clustering of tyrosine-phosphorylated proteins. Infect Immun 65: 4341–4349 [PubMed].
    [Google Scholar]
  47. Mikaty G. , Soyer M. , Mairey E. , Henry N. , Dyer D. , Forest K. T. , Morand P. , Guadagnini S. , Prévost M. C. , other authors . ( 2009;). Extracellular bacterial pathogen induces host cell surface reorganization to resist shear stress. PLoS Pathog 5: e1000314 [CrossRef] [PubMed].
    [Google Scholar]
  48. Morand P. C. , Tattevin P. , Eugene E. , Beretti J. L. , Nassif X. . ( 2001;). The adhesive property of the type IV pilus-associated component PilC1 of pathogenic Neisseria is supported by the conformational structure of the N-terminal part of the molecule. Mol Microbiol 40: 846–856 [CrossRef] [PubMed].
    [Google Scholar]
  49. Muzzi A. , Mora M. , Pizza M. , Rappuoli R. , Donati C. . ( 2013;). Conservation of meningococcal antigens in the genus Neisseria . MBio 4: e00163-13 [CrossRef] [PubMed].
    [Google Scholar]
  50. Nägele V. , Heesemann J. , Schielke S. , Jiménez-Soto L. F. , Kurzai O. , Ackermann N. . ( 2011;). Neisseria meningitidis adhesin NadA targets β1 integrins: functional similarity to Yersinia invasin. J Biol Chem 286: 20536–20546 [CrossRef] [PubMed].
    [Google Scholar]
  51. Nassif X. . ( 1999;). Interactions between encapsulated Neisseria meningitidis and host cells. Int Microbiol 2: 133–136 [PubMed].
    [Google Scholar]
  52. Nassif X. , Lowy J. , Stenberg P. , O'Gaora P. , Ganji A. , So M. . ( 1993;). Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol Microbiol 8: 719–725 [CrossRef] [PubMed].
    [Google Scholar]
  53. Nassif X. , Beretti J. L. , Lowy J. , Stenberg P. , O'Gaora P. , Pfeifer J. , Normark S. , So M. . ( 1994;). Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. Proc Natl Acad Sci U S A 91: 3769–3773 [CrossRef] [PubMed].
    [Google Scholar]
  54. Naville M. , Ghuillot-Gaudeffroy A. , Marchais A. , Gautheret D. . ( 2011;). ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol 8: 11–13 [CrossRef] [PubMed].
    [Google Scholar]
  55. Ojanen-Reuhs T. , Kalkkinen N. , Westerlund-Wikström B. , van Doorn J. , Haahtela K. , Nurmiaho-Lassila E. L. , Wengelnik K. , Bonas U. , Korhonen T. K. . ( 1997;). Characterization of the fimA gene encoding bundle-forming fimbriae of the plant pathogen Xanthomonas campestris pv. vesicatoria . J Bacteriol 179: 1280–1290 [PubMed].
    [Google Scholar]
  56. Oldfield N. J. , Bland S. J. , Taraktsoglou M. , Dos Ramos F. J. , Robinson K. , Wooldridge K. G. , Ala'Aldeen D. A. . ( 2007;). T-cell stimulating protein A (TspA) of Neisseria meningitidis is required for optimal adhesion to human cells. Cell Microbiol 9: 463–478 [CrossRef] [PubMed].
    [Google Scholar]
  57. Paetzel M. , Karla A. , Strynadka N. C. , Dalbey R. E. . ( 2002;). Signal peptidases. Chem Rev 102: 4549–4580 [CrossRef] [PubMed].
    [Google Scholar]
  58. Parge H. E. , Forest K. T. , Hickey M. J. , Christensen D. A. , Getzoff E. D. , Tainer J. A. . ( 1995;). Structure of the fibre-forming protein pilin at 2.6 Å resolution. Nature 378: 32–38 [CrossRef] [PubMed].
    [Google Scholar]
  59. Paruchuri D. K. , Seifert H. S. , Ajioka R. S. , Karlsson K. A. , So M. . ( 1990;). Identification and characterization of a Neisseria gonorrhoeae gene encoding a glycolipid-binding adhesin. Proc Natl Acad Sci U S A 87: 333–337 [CrossRef] [PubMed].
    [Google Scholar]
  60. Pujol C. , Eugène E. , de Saint Martin L. , Nassif X. . ( 1997;). Interaction of Neisseria meningitidis with a polarized monolayer of epithelial cells. Infect Immun 65: 4836–4842 [PubMed].
    [Google Scholar]
  61. Pujol C. , Eugène E. , Marceau M. , Nassif X. . ( 1999;). The meningococcal PilT protein is required for induction of intimate attachment to epithelial cells following pilus-mediated adhesion. Proc Natl Acad Sci U S A 96: 4017–4022 [CrossRef] [PubMed].
    [Google Scholar]
  62. Rayner C. F. , Dewar A. , Moxon E. R. , Virji M. , Wilson R. . ( 1995;). The effect of variations in the expression of pili on the interaction of Neisseria meningitidis with human nasopharyngeal epithelium. J Infect Dis 171: 113–121 [CrossRef] [PubMed].
    [Google Scholar]
  63. Rendón M. A. , Hockenberry A. M. , McManus S. A. , So M. . ( 2013;). Sigma factor RpoN (σ54) regulates pilE transcription in commensal Neisseria elongata . Mol Microbiol 90: 103–113 [PubMed].
    [Google Scholar]
  64. Rudel T. , Scheuerpflug I. , Meyer T. F. . ( 1995;). Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature 373: 357–359 [CrossRef] [PubMed].
    [Google Scholar]
  65. Rusniok C. , Vallenet D. , Floquet S. , Ewles H. , Mouzé-Soulama C. , Brown D. , Lajus A. , Buchrieser C. , Médigue C. , other authors . ( 2009;). NeMeSys: a biological resource for narrowing the gap between sequence and function in the human pathogen Neisseria meningitidis . Genome Biol 10: R110 [CrossRef] [PubMed].
    [Google Scholar]
  66. Saunders J. R. , Wakeman J. , Sims G. , O'Sullivan H. , Hart C. A. , Virji M. . ( 1993;). Piliation in Neisseria meningitidis and its consequences. J Med Microbiol 39: 7–9.
    [Google Scholar]
  67. Scarselli M. , Serruto D. , Montanari P. , Capecchi B. , Adu-Bobie J. , Veggi D. , Rappuoli R. , Pizza M. , Aricò B. . ( 2006;). Neisseria meningitidis NhhA is a multifunctional trimeric autotransporter adhesin. Mol Microbiol 61: 631–644 [CrossRef] [PubMed].
    [Google Scholar]
  68. Schaefer J. , Engl C. , Zhang N. , Lawton E. , Buck M. . ( 2015;). Genome wide interactions of wild-type and activator bypass forms of σ54. Nucleic Acids Res 43: 7280–7291.[CrossRef]
    [Google Scholar]
  69. Seifert H. S. , Ajioka R. S. , Paruchuri D. , Heffron F. , So M. . ( 1990;). Shuttle mutagenesis of Neisseria gonorrhoeae: pilin null mutations lower DNA transformation competence. J Bacteriol 172: 40–46 [PubMed].
    [Google Scholar]
  70. Serruto D. , Adu-Bobie J. , Scarselli M. , Veggi D. , Pizza M. , Rappuoli R. , Aricò B. . ( 2003;). Neisseria meningitidis App, a new adhesin with autocatalytic serine protease activity. Mol Microbiol 48: 323–334 [CrossRef] [PubMed].
    [Google Scholar]
  71. Sheikhi R. , Amin M. , Rostami S. , Shoja S. , Ebrahimi N. . ( 2015;). Oropharyngeal colonization with Neisseria lactamica, other nonpathogenic Neisseria species and Moraxella catarrhalis among young healthy children in Ahvaz, Iran. Jundishapur J Microbiol 8: e14813 [CrossRef] [PubMed].
    [Google Scholar]
  72. Snyder L. A. , Saunders N. J. . ( 2006;). The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as ‘virulence genes’. BMC Genomics 7: 128 [CrossRef] [PubMed].
    [Google Scholar]
  73. Stabler R. A. , Marsden G. L. , Witney A. A. , Li Y. , Bentley S. D. , Tang C. M. , Hinds J. . ( 2005;). Identification of pathogen-specific genes through microarray analysis of pathogenic and commensal Neisseria species. Microbiology 151: 2907–2922 [CrossRef] [PubMed].
    [Google Scholar]
  74. Stephens D. S. , Hoffman L. H. , McGee Z. A. . ( 1983;). Interaction of Neisseria meningitidis with human nasopharyngeal mucosa: attachment and entry into columnar epithelial cells. J Infect Dis 148: 369–376 [CrossRef] [PubMed].
    [Google Scholar]
  75. Toleman M. , Aho E. , Virji M. . ( 2001;). Expression of pathogen-like Opa adhesins in commensal Neisseria: genetic and functional analysis. Cell Microbiol 3: 33–44 [CrossRef] [PubMed].
    [Google Scholar]
  76. Tønjum T. , Weir S. , Bøvre K. , Progulske-Fox A. , Marrs C. F. . ( 1993;). Sequence divergence in two tandemly located pilin genes of Eikenella corrodens . Infect Immun 61: 1909–1916 [PubMed].
    [Google Scholar]
  77. Trivedi K. , Tang C. M. , Exley R. M. . ( 2011;). Mechanisms of meningococcal colonisation. Trends Microbiol 19: 456–463 [CrossRef] [PubMed].
    [Google Scholar]
  78. Turner D. P. , Marietou A. G. , Johnston L. , Ho K. K. , Rogers A. J. , Wooldridge K. G. , Ala'Aldeen D. A. . ( 2006;). Characterization of MspA, an immunogenic autotransporter protein that mediates adhesion to epithelial and endothelial cells in Neisseria meningitidis . Infect Immun 74: 2957–2964 [CrossRef] [PubMed].
    [Google Scholar]
  79. van Putten J. P. , Paul S. M. . ( 1995;). Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO J 14: 2144–2154 [PubMed].
    [Google Scholar]
  80. Virji M. , Heckels J. E. . ( 1983;). Antigenic cross-reactivity of Neisseria pili: investigations with type- and species-specific monoclonal antibodies. J Gen Microbiol 129: 2761–2768 [PubMed].
    [Google Scholar]
  81. Virji M. , Heckels J. E. , Potts W. J. , Hart C. A. , Saunders J. R. . ( 1989;). Identification of epitopes recognized by monoclonal antibodies SM1 and SM2 which react with all pili of Neisseria gonorrhoeae but which differentiate between two structural classes of pili expressed by Neisseria meningitidis and the distribution of their encoding sequences in the genomes of Neisseria spp. J Gen Microbiol 135: 3239–3251 [PubMed].
    [Google Scholar]
  82. Virji M. , Kayhty H. , Ferguson D. J. , Alexandrescu C. , Heckels J. E. , Moxon E. R. . ( 1991;). The role of pili in the interactions of pathogenic Neisseria with cultured human endothelial cells. Mol Microbiol 5: 1831–1841 [CrossRef] [PubMed].
    [Google Scholar]
  83. Virji M. , Alexandrescu C. , Ferguson D. J. , Saunders J. R. , Moxon E. R. . ( 1992;). Variations in the expression of pili: the effect on adherence of Neisseria meningitidis to human epithelial and endothelial cells. Mol Microbiol 6: 1271–1279 [CrossRef] [PubMed].
    [Google Scholar]
  84. Virji M. , Saunders J. R. , Sims G. , Makepeace K. , Maskell D. , Ferguson D. J. . ( 1993;). Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol Microbiol 10: 1013–1028 [CrossRef] [PubMed].
    [Google Scholar]
  85. Virji M. , Watt S. M. , Barker S. , Makepeace K. , Doyonnas R. . ( 1996;). The N-domain of the human CD66a adhesion molecule is a target for Opa proteins of Neisseria meningitidis and Neisseria gonorrhoeae . Mol Microbiol 22: 929–939 [CrossRef] [PubMed].
    [Google Scholar]
  86. Weir S. , Lee L. W. , Marrs C. F. . ( 1996;). Identification of four complete type 4 pilin genes in a single Kingella denitrificans genome. Infect Immun 64: 4993–4999 [PubMed].
    [Google Scholar]
  87. Wolff K. , Stern A. . ( 1995;). Identification and characterization of specific sequences encoding pathogenicity associated proteins in the genome of commensal Neisseria species. FEMS Microbiol Lett 125: 255–263 [CrossRef] [PubMed].
    [Google Scholar]
  88. Wolfgang M. , van Putten J. P. , Hayes S. F. , Koomey M. . ( 1999;). The comP locus of Neisseria gonorrhoeae encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation. Mol Microbiol 31: 1345–1357 [CrossRef] [PubMed].
    [Google Scholar]
  89. Wörmann M. E. , Horien C. L. , Bennett J. S. , Jolley K. A. , Maiden M. C. , Tang C. M. , Aho E. L. , Exley R. M. . ( 2014;). Sequence, distribution and chromosomal context of class I and class II pilin genes of Neisseria meningitidis identified in whole genome sequences. BMC Genomics 15: 253 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000248
Loading
/content/journal/micro/10.1099/mic.0.000248
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error