1887

Abstract

Fimbrial subunit synthesis, secretion and assembly on the surface of the periodontal pathogen are essential for biofilm formation. A recent quantitative proteomics study employing an afimbriated strain and a developed mutant isogenic for the inner-membrane protein morphogenesis protein C (MorC) revealed that the abundance of the proteins of the fimbrial secretion apparatus in the membrane is dependent on MorC. To investigate further the relationship between MorC and fimbriation, we identified and complemented the defect in fimbriae production in the afimbriated laboratory strain. The transformed strain expressing a plasmid containing genes encoding the WT fimbrial subunit and the prepilin peptidase displayed all of the hallmarks of a fimbriated bacterium including the distinct star-like colony morphology, robust biofilm formation, biofilm architecture composed of discrete microcolonies and the presence of fimbriae. When the identical plasmid was transformed into a mutant strain, the bacterium did not display any of the phenotypes of fimbriated strains. Extension of these studies to a naturally fimbriated clinical strain showed that the resulting mutant maintained the characteristic colony morphology of fimbriated strains. There was, however, a reduction in the secretion of fimbrial subunits, and fewer fimbriae were observed on the surface of the mutant strain. Furthermore, the mutant of the fimbriated strain displayed a significantly altered biofilm microcolony architecture, while maintaining a similar biofilm mass to the parent strain. These results suggest that MorC influences fimbrial secretion and microcolony formation in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000246
2016-03-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/3/513.html?itemId=/content/journal/micro/10.1099/mic.0.000246&mimeType=html&fmt=ahah

References

  1. Azari F., Nyland L., Yu C., Radermacher M., Mintz K. P., Ruiz T.. 2013; Ultrastructural analysis of the rugose cell envelope of a member of the Pasteurellaceae family. J Bacteriol195:1680–1688 [CrossRef][PubMed]
    [Google Scholar]
  2. Babic A., Guérout A. M., Mazel D.. 2008; Construction of an improved RP4 (RK2)-based conjugative system. Res Microbiol159:545–549 [CrossRef][PubMed]
    [Google Scholar]
  3. Bodet C., Andrian E., Tanabe S., Grenier D.. 2007; Actinobacillus actinomycetemcomitans lipopolysaccharide regulates matrix metalloproteinase, tissue inhibitors of matrix metalloproteinase, and plasminogen activator production by human gingival fibroblasts: a potential role in connective tissue destruction. J Cell Physiol212:189–194 [CrossRef][PubMed]
    [Google Scholar]
  4. Burall L. S., Harro J. M., Li X., Lockatell C. V., Himpsl S. D., Hebel J. R., Johnson D. E., Mobley H. L.. 2004; Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun72:2922–2938 [CrossRef][PubMed]
    [Google Scholar]
  5. Craig L., Volkmann N., Arvai A. S., Pique M. E., Yeager M., Egelman E. H., Tainer J. A.. 2006; Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol Cell23:651–662 [CrossRef][PubMed]
    [Google Scholar]
  6. Das M., Badley A. D., Cockerill F. R., Steckelberg J. M., Wilson W. R.. 1997; Infective endocarditis caused by HACEK microorganisms. Annu Rev Med48:25–33 [CrossRef][PubMed]
    [Google Scholar]
  7. Deng M., Misra R.. 1996; Examination of AsmA and its effect on the assembly of Escherichia coli outer membrane proteins. Mol Microbiol21:605–612[CrossRef]
    [Google Scholar]
  8. Elowitz M. B., Levine A. J., Siggia E. D., Swain P. S.. 2002; Stochastic gene expression in a single cell. Science297:1183–1186 [CrossRef][PubMed]
    [Google Scholar]
  9. Fine D. H., Furgang D., Kaplan J., Charlesworth J., Figurski D. H.. 1999; Tenacious adhesion of Actinobacillus actinomycetemcomitans strain CU1000 to salivary-coated hydroxyapatite. Arch Oral Biol44:1063–1076 [CrossRef][PubMed]
    [Google Scholar]
  10. Gallant C. V., Sedic M., Chicoine E. A., Ruiz T., Mintz K. P.. 2008; Membrane morphology and leukotoxin secretion are associated with a novel membrane protein of Aggregatibacter actinomycetemcomitans . J Bacteriol190:5972–5980 [CrossRef][PubMed]
    [Google Scholar]
  11. Haase E. M., Bonstein T., Palmer R.J., Jr, Scannapieco F. A.. 2006; Environmental influences on Actinobacillus actinomycetemcomitans biofilm formation. Arch Oral Biol51:299–314 [CrossRef][PubMed]
    [Google Scholar]
  12. Haubek D., Ennibi O. K., Poulsen K., Benzarti N., Baelum V.. 2004; The highly leukotoxic JP2 clone of Actinobacillus actinomycetemcomitans and progression of periodontal attachment loss. J Dent Res83:767–770 [CrossRef][PubMed]
    [Google Scholar]
  13. Inouye T., Ohta H., Kokeguchi S., Fukui K., Kato K.. 1990; Colonial variation and fimbriation of Actinobacillus actinomycetemcomitans . FEMS Microbiol Lett57:13–17 [CrossRef][PubMed]
    [Google Scholar]
  14. Kachlany S. C., Planet P. J., Bhattacharjee M. K., Kollia E., DeSalle R., Fine D. H., Figurski D. H.. 2000; Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and Archaea . J Bacteriol182:6169–6176 [CrossRef][PubMed]
    [Google Scholar]
  15. Kachlany S. C., Planet P. J., Desalle R., Fine D. H., Figurski D. H., Kaplan J. B.. 2001; flp-1, the first representative of a new pilin gene subfamily, is required for non-specific adherence of Actinobacillus actinomycetemcomitans . Mol Microbiol40:542–554 [CrossRef][PubMed]
    [Google Scholar]
  16. Källberg M., Wang H., Wang S., Peng J., Wang Z., Lu H., Xu J.. 2012; Template-based protein structure modeling using the RaptorX web server. Nat Protoc7:1511–1522 [CrossRef][PubMed]
    [Google Scholar]
  17. Kittichotirat W., Bumgarner R. E., Asikainen S., Chen C.. 2011; Identification of the pangenome and its components in 14 distinct Aggregatibacter actinomycetemcomitans strains by comparative genomic analysis. PLoS One6:e22420 [CrossRef][PubMed]
    [Google Scholar]
  18. Lukomski S., Hoe N. P., Abdi I., Rurangirwa J., Kordari P., Liu M., Dou S. J., Adams G. G., Musser J. M.. 2000; Nonpolar inactivation of the hypervariable streptococcal inhibitor of complement gene (sic) in serotype M1 Streptococcus pyogenes significantly decreases mouse mucosal colonization. Infect Immun68:535–542 [CrossRef][PubMed]
    [Google Scholar]
  19. Merritt J. H., Kadouri D. E., O'Toole G. A.. 2005; Growing and analyzing static biofilms. [CrossRef] Curr Protoc Microbiol, 22:B:1B.1:1B.1.1–1B.1.18;
  20. Mintz K. P.. 2004; Identification of an extracellular matrix protein adhesin, EmaA, which mediates the adhesion of Actinobacillus actinomycetemcomitans to collagen. Microbiology150:2677–2688 [CrossRef][PubMed]
    [Google Scholar]
  21. Mintz K. P., Fives-Taylor P. M.. 1994; Adhesion of Actinobacillus actinomycetemcomitans to a human oral cell line. Infect Immun62:3672–3678[PubMed]
    [Google Scholar]
  22. Perez-Cheeks B. A., Planet P. J., Sarkar I. N., Clock S. A., Xu Q., Figurski D. H.. 2012; The product of tadZ, a new member of the parA/minD superfamily, localizes to a pole in Aggregatibacter actinomycetemcomitans . Mol Microbiol83:694–711 [CrossRef][PubMed]
    [Google Scholar]
  23. Rossiter A. E., Leyton D. L., Tveen-Jensen K., Browning D. F., Sevastsyanovich Y., Knowles T. J., Nichols K. B., Cunningham A. F., Overduin M., other authors. 2011; The essential β-barrel assembly machinery complex components BamD and BamA are required for autotransporter biogenesis. J Bacteriol193:4250–4253 [CrossRef][PubMed]
    [Google Scholar]
  24. Schneider C. A., Rasband W. S., Eliceiri K. W.. 2012; NIH Image to ImageJ: 25 years of image analysis. Nat Methods9:671–675 [CrossRef][PubMed]
    [Google Scholar]
  25. Schreiner H. C., Sinatra K., Kaplan J. B., Furgang D., Kachlany S. C., Planet P. J., Perez B. A., Figurski D. H., Fine D. H.. 2003; Tight-adherence genes of Actinobacillus actinomycetemcomitans are required for virulence in a rat model. Proc Natl Acad Sci U S A100:7295–7300 [CrossRef][PubMed]
    [Google Scholar]
  26. Selkrig J., Mosbahi K., Webb C. T., Belousoff M. J., Perry A. J., Wells T. J., Morris F., Leyton D. L., Totsika M., other authors. 2012; Discovery of an archetypal protein transport system in bacterial outer membranes. Nat Struct Mol Biol19:506–510 S1[CrossRef]
    [Google Scholar]
  27. Selkrig J., Belousoff M. J., Headey S. J., Heinz E., Shiota T., Shen H. H., Beckham S. A., Bamert R. S., Phan M. D., other authors. 2015; Conserved features in TamA enable interaction with TamB to drive the activity of the translocation and assembly module. Sci Rep5:12905 [CrossRef][PubMed]
    [Google Scholar]
  28. Silhavy T. J., Kahne D., Walker S.. 2010; The bacterial cell envelope. Cold Spring Harb Perspect Biol2:a000414 [CrossRef][PubMed]
    [Google Scholar]
  29. Slots J., Reynolds H. S., Genco R. J.. 1980; Actinobacillus actinomycetemcomitans in human periodontal disease: a cross-sectional microbiological investigation. Infect Immun29:1013–1020[PubMed]
    [Google Scholar]
  30. Smith K. P.. 2015; A conserved inner membrane protein of Aggregatibacter actinomycetemcomitans is integral for membrane function. Thesis, University of Vermont, VT, USA.;
  31. Smith K. P., Fields J. G., Voogt R. D., Deng B., Lam Y. W., Mintz K. P.. 2015a; Alteration in abundance of specific membrane proteins of Aggregatibacter actinomycetemcomitans is attributed to deletion of the inner membrane protein MorC. Proteomics15:1859–1867 [CrossRef][PubMed]
    [Google Scholar]
  32. Smith K. P., Fields J. G., Voogt R. D., Deng B., Lam Y. W., Mintz K. P.. 2015b; The cell envelope proteome of Aggregatibacter actinomycetemcomitans . Mol Oral Microbiol30:97–110 [CrossRef][PubMed]
    [Google Scholar]
  33. Smith K. P., Voogt R. D., Ruiz T., Mintz K. P.. 2015c; The conserved carboxyl domain of MorC, an inner membrane protein of Aggregatibacter actinomycetemcomitans, is essential for membrane function. Mol Oral Microbiol31:43–58[PubMed][CrossRef]
    [Google Scholar]
  34. Struve C., Forestier C., Krogfelt K. A.. 2003; Application of a novel multi-screening signature-tagged mutagenesis assay for identification of Klebsiella pneumoniae genes essential in colonization and infection. Microbiology149:167–176 [CrossRef][PubMed]
    [Google Scholar]
  35. Tang G., Mintz K. P.. 2010; Glycosylation of the collagen adhesin EmaA of Aggregatibacter actinomycetemcomitans is dependent upon the lipopolysaccharide biosynthetic pathway. J Bacteriol192:1395–1404 [CrossRef][PubMed]
    [Google Scholar]
  36. Tomich M., Fine D. H., Figurski D. H.. 2006; The TadV protein of Actinobacillus actinomycetemcomitans is a novel aspartic acid prepilin peptidase required for maturation of the Flp1 pilin and TadE and TadF pseudopilins. J Bacteriol188:6899–6914 [CrossRef][PubMed]
    [Google Scholar]
  37. Wang Y., Liu A., Chen C.. 2005; Genetic basis for conversion of rough-to-smooth colony morphology in Actinobacillus actinomycetemcomitans . Infect Immun73:3749–3753 [CrossRef][PubMed]
    [Google Scholar]
  38. Zambon J. J., Slots J., Genco R. J.. 1983; Serology of oral Actinobacillus actinomycetemcomitans and serotype distribution in human periodontal disease. Infect Immun41:19–27[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000246
Loading
/content/journal/micro/10.1099/mic.0.000246
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error