1887

Abstract

produces several virulence factors that allow it to cause a variety of infections. One of the major virulence factors is the capsule, which contributes to the survival of the pathogen within the host as a way to escape phagocytosis. The production of the capsular polysaccharide is encoded in a 16 gene operon, which is regulated in response to several environmental stimuli including nutrient availability. For instance, the capsule is produced in the late- and post-exponential growth phases, but not in the early- or mid-exponential growth phase. Several regulators are involved in capsule production, but the regulation of the operon is still poorly understood. In this study, we show that MsaB activates the operon by binding directly to a 10 bp repeat in the promoter region. We show that despite the fact that MsaB is expressed throughout four growth phases, it only activates capsule production in the late- and post-exponential growth phases. Furthermore, we find that MsaB does not bind to its target site in the early and mid-exponential growth phases. This correlates with decreased nutrient availability and capsule production. These data suggest either that MsaB binding ability changes in response to nutrients or that other operon regulators interfere with the binding of MsaB to its target site. This study increases our understanding of the regulation of capsule production and the mechanism of action of MsaB.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000243
2016-03-01
2020-04-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/3/575.html?itemId=/content/journal/micro/10.1099/mic.0.000243&mimeType=html&fmt=ahah

References

  1. Arbeit R. D., Karakawa W. W., Vann W. F., Robbins J. B.. 1984; Predominance of two newly described capsular polysaccharide types among clinical isolates of Staphylococcus aureus . Diagn Microbiol Infect Dis2:85–91 [CrossRef][PubMed]
    [Google Scholar]
  2. Bae T., Schneewind O.. 2006; Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid55:58–63 [CrossRef][PubMed]
    [Google Scholar]
  3. Bagnoli F., Bertholet S., Grandi G.. 2012; Inferring reasons for the failure of Staphylococcus aureus vaccines in clinical trials. Front Cell Infect Microbiol2:16 [CrossRef][PubMed]
    [Google Scholar]
  4. Bischoff M., Dunman P., Kormanec J., Macapagal D., Murphy E., Mounts W., Berger-Bachi B., Projan S.. 2004; Microarray-based analysis of the Staphylococcus aureus σB regulon. J Bacteriol186:4085–4099 [CrossRef][PubMed]
    [Google Scholar]
  5. Boyle-Vavra S., Li X., Alam M. T., Read T. D., Sieth J., Cywes-Bentley C., Dobbins G., David M. Z., Kumar N., other authors. 2015; USA300 and USA500 clonal lineages of Staphylococcus aureus do not produce a capsular polysaccharide due to conserved mutations in the cap5 locus. MBio6:e02585-14[PubMed][CrossRef]
    [Google Scholar]
  6. Bronner S., Monteil H., Prevost G.. 2004; Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev28:183–200 [CrossRef][PubMed]
    [Google Scholar]
  7. Charpentier E., Anton A. I., Barry P., Alfonso B., Fang Y., Novick R. P.. 2004; Novel cassette-based shuttle vector system for gram-positive bacteria. Appl Environ Microbiol70:6076–6085 [CrossRef][PubMed]
    [Google Scholar]
  8. Chen Z., Luong T. T., Lee C. Y.. 2007; The sbcDC locus mediates repression of type 5 capsule production as part of the SOS response in Staphylococcus aureus . J Bacteriol189:7343–7350 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen K., Mizianty M. J., Kurgan L.. 2012; Prediction and analysis of nucleotide-binding residues using sequence and sequence-derived structural descriptors. Bioinformatics28:331–341 [CrossRef][PubMed]
    [Google Scholar]
  10. Cheung A. L., Bayer A. S., Zhang G., Gresham H., Xiong Y. Q.. 2004; Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus . FEMS Immunol Med Microbiol40:1–9 [CrossRef][PubMed]
    [Google Scholar]
  11. Chini V., Foka A., Dimitracopoulos G., Spiliopoulou I.. 2007; Absolute and relative real-time PCR in the quantification of tst gene expression among methicillin-resistant Staphylococcus aureus: evaluation by two mathematical models. Lett Appl Microbiol45:479–484 [CrossRef][PubMed]
    [Google Scholar]
  12. Cocchiaro J. L., Gomez M. I., Risley A., Solinga R., Sordelli D. O., Lee J. C.. 2006; Molecular characterization of the capsule locus from non-typeable Staphylococcus aureus . Mol Microbiol59:948–960 [CrossRef][PubMed]
    [Google Scholar]
  13. Cunnion K. M., Lee J. C., Frank M. M.. 2001; Capsule production and growth phase influence binding of complement to Staphylococcus aureus . Infect Immun69:6796–6803 [CrossRef][PubMed]
    [Google Scholar]
  14. Dassy B., Fournier J. M.. 1996; Respiratory activity is essential for post-exponential-phase production of type 5 capsular polysaccharide by Staphylococcus aureus . Infect Immun64:2408–2414[PubMed]
    [Google Scholar]
  15. Dassy B., Hogan T., Foster T. J., Fournier J. M.. 1993; Involvement of the accessory gene regulator (agr) in expression of type 5 capsular polysaccharide by Staphylococcus aureus . J Gen Microbiol139:1301–1306 [CrossRef][PubMed]
    [Google Scholar]
  16. David M. Z., Daum R. S.. 2010; Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev23:616–687 [CrossRef][PubMed]
    [Google Scholar]
  17. Ding Y., Liu X., Chen F., Di H., Xu B., Zhou L., Deng X., Wu M., Yang C. G., Lan L.. 2014; Metabolic sensor governing bacterial virulence in Staphylococcus aureus . Proc Natl Acad Sci U S A111:E4981–E4990 [CrossRef][PubMed]
    [Google Scholar]
  18. Fattom A., Schneerson R., Watson D. C., Karakawa W. W., Fitzgerald D., Pastan I., Li X., Shiloach J., Bryla D. A., Robbins J. B.. 1993; Laboratory and clinical evaluation of conjugate vaccines composed of Staphylococcus aureus type 5 and type 8 capsular polysaccharides bound to Pseudomonas aeruginosa recombinant exoprotein A. Infect Immun61:1023–1032[PubMed]
    [Google Scholar]
  19. Fattom A. I., Sarwar J., Ortiz A., Naso R.. 1996; Staphylococcus aureus capsular polysaccharide (CP) vaccine and CP-specific antibodies protect mice against bacterial challenge. Infect Immun64:1659–1665[PubMed]
    [Google Scholar]
  20. Goerke C., Campana S., Bayer M. G., Doring G., Botzenhart K., Wolz C.. 2000; Direct quantitative transcript analysis of the agr regulon of Staphylococcus aureus during human infection in comparison to the expression profile in vitro. Infect Immun68:1304–1311 [CrossRef][PubMed]
    [Google Scholar]
  21. Graumann P., Wendrich T. M., Weber M. H., Schroder K., Marahiel M. A.. 1997; A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol25:741–756 [CrossRef][PubMed]
    [Google Scholar]
  22. Gupta R. K., Alba J., Xiong Y. Q., Bayer A. S., Lee C. Y.. 2013; MgrA activates expression of capsule genes, but not the α-toxin gene in experimental Staphylococcus aureus endocarditis. J Infect Dis208:1841–1848 [CrossRef][PubMed]
    [Google Scholar]
  23. Jutras B. L., Chenail A. M., Rowland C. L., Carroll D., Miller M. C., Bykowski T., Stevenson B.. 2013; Eubacterial SpoVG homologs constitute a new family of site-specific DNA-binding proteins. PLoS One8:e66683 [CrossRef][PubMed]
    [Google Scholar]
  24. Kampen A. H., Tollersrud T., Lund A.. 2005; Staphylococcus aureus capsular polysaccharide types 5 and 8 reduce killing by bovine neutrophils in vitro. Infect Immun73:1578–1583 [CrossRef][PubMed]
    [Google Scholar]
  25. Karakawa W. W., Vann W. F.. 1982; Capsular polysaccharides of Staphylococcus aureus . Semin Infect Dis4:285–293[PubMed]
    [Google Scholar]
  26. Karakawa W. W., Sutton A., Schneerson R., Karpas A., Vann W. F.. 1988; Capsular antibodies induce type-specific phagocytosis of capsulated Staphylococcus aureus by human polymorphonuclear leukocytes. Infect Immun56:1090–1095[PubMed]
    [Google Scholar]
  27. Lattar S. M., Noto Llana M., Denoel P., Germain S., Buzzola F. R., Lee J. C., Sordelli D. O.. 2014; Protein antigens increase the protective efficacy of a capsule-based vaccine against Staphylococcus aureus in a rat model of osteomyelitis. Infect Immun82:83–91 [CrossRef][PubMed]
    [Google Scholar]
  28. Lee J. C., Park J. S., Shepherd S. E., Carey V., Fattom A.. 1997; Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats. Infect Immun65:4146–4151[PubMed]
    [Google Scholar]
  29. Lei M. G., Lee C. Y.. 2015; RbsR activates capsule but represses the rbsUDK operon in Staphylococcus aureus . J Bacteriol197:3666–3675 [CrossRef][PubMed]
    [Google Scholar]
  30. Lowy F. D.. 1998; Staphylococcus aureus infections. N Engl J Med339:520–532 [CrossRef][PubMed]
    [Google Scholar]
  31. Lowy F. D.. 2011; How Staphylococcus aureus adapts to its host. N Engl J Med364:1987–1990 [CrossRef][PubMed]
    [Google Scholar]
  32. Luong T. T., Lee C. Y.. 2002; Overproduction of type 8 capsular polysaccharide augments Staphylococcus aureus virulence. Infect Immun70:3389–3395 [CrossRef][PubMed]
    [Google Scholar]
  33. Luong T. T., Lee C. Y.. 2006; The arl locus positively regulates Staphylococcus aureus type 5 capsule via an mgrA-dependent pathway. Microbiology152:3123–3131 [CrossRef][PubMed]
    [Google Scholar]
  34. Luong T., Sau S., Gomez M., Lee J. C., Lee C. Y.. 2002; Regulation of Staphylococcus aureus capsular polysaccharide expression by agr and sarA . Infect Immun70:444–450 [CrossRef][PubMed]
    [Google Scholar]
  35. Luong T. T., Newell S. W., Lee C. Y.. 2003; Mgr, a novel global regulator in Staphylococcus aureus . J Bacteriol185:3703–3710 [CrossRef][PubMed]
    [Google Scholar]
  36. Luong T. T., Sau K., Roux C., Sau S., Dunman P. M., Lee C. Y.. 2011; Staphylococcus aureus ClpC divergently regulates capsule via sae and codY in strain Newman but activates capsule via codY in strain UAMS-1 and in strain Newman with repaired saeS . J Bacteriol193:686–694 [CrossRef][PubMed]
    [Google Scholar]
  37. Majerczyk C. D., Dunman P. M., Luong T. T., Lee C. Y., Sadykov M. R., Somerville G. A., Bodi K., Sonenshein A. L.. 2010; Direct targets of CodY in Staphylococcus aureus . J Bacteriol192:2861–2877 [CrossRef][PubMed]
    [Google Scholar]
  38. Meier S., Goerke C., Wolz C., Seidl K., Homerova D., Schulthess B., Kormanec J., Berger-Bachi B., Bischoff M.. 2007; σB and the σB-dependent arlRS and yabJ-spoVG loci affect capsule formation in Staphylococcus aureus . Infect Immun75:4562–4571 [CrossRef][PubMed]
    [Google Scholar]
  39. Montgomery C. P., Boyle-Vavra S., Adem P. V., Lee J. C., Husain A. N., Clasen J., Daum R. S.. 2008; Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. J Infect Dis198:561–570 [CrossRef][PubMed]
    [Google Scholar]
  40. Nanra J. S., Buitrago S. M., Crawford S., Ng J., Fink P. S., Hawkins J., Scully I. L., McNeil L. K., Aste-Amézaga J. M., other authors. 2013; Capsular polysaccharides are an important immune evasion mechanism for Staphylococcus aureus . Hum Vaccin Immunother9:480–487 [CrossRef][PubMed]
    [Google Scholar]
  41. Nemeth J., Lee J. C.. 1995; Antibodies to capsular polysaccharides are not protective against experimental Staphylococcus aureus endocarditis. Infect Immun63:375–380[PubMed]
    [Google Scholar]
  42. Nilsson I. M., Lee J. C., Bremell T., Ryden C., Tarkowski A.. 1997; The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. Infect Immun65:4216–4221[PubMed]
    [Google Scholar]
  43. Novick R. P., Geisinger E.. 2008; Quorum sensing in staphylococci. Annu Rev Genet42:541–564 [CrossRef][PubMed]
    [Google Scholar]
  44. Nygaard T. K., Pallister K. B., Dumont A. L., Dewald M., Watkins R. L., Pallister E. Q., Malone C., Griffith S., Horswill A. R., other authors. 2012; Alpha-toxin induces programmed cell death of human T cells, B cells, and monocytes during USA300 infection. PLoS One7:e36532 [CrossRef][PubMed]
    [Google Scholar]
  45. O'Riordan K., Lee J. C.. 2004; Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev17:218–234 [CrossRef][PubMed]
    [Google Scholar]
  46. Ouyang S., Sau S., Lee C. Y.. 1999; Promoter analysis of the cap8 operon, involved in type 8 capsular polysaccharide production in Staphylococcus aureus . J Bacteriol181:2492–2500[PubMed]
    [Google Scholar]
  47. Pané-Farré J., Jonas B., Förstner K., Engelmann S., Hecker M.. 2006; The σB regulon in Staphylococcus aureus and its regulation. Int J Med Microbiol296:237–258 [CrossRef][PubMed]
    [Google Scholar]
  48. Pohl K., Francois P., Stenz L., Schlink F., Geiger T., Herbert S., Goerke C., Schrenzel J., Wolz C.. 2009; CodY in Staphylococcus aureus: a regulatory link between metabolism and virulence gene expression. J Bacteriol191:2953–2963 [CrossRef][PubMed]
    [Google Scholar]
  49. Poutrel B., Gilbert F. B., Lebrun M.. 1995; Effects of culture conditions on production of type 5 capsular polysaccharide by human and bovine Staphylococcus aureus strains. Clin Diagn Lab Immunol2:166–171[PubMed]
    [Google Scholar]
  50. Ratnayake-Lecamwasam M., Serror P., Wong K. W., Sonenshein A. L.. 2001; Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev15:1093–1103 [CrossRef][PubMed]
    [Google Scholar]
  51. Rost B., Yachdav G., Liu J.. 2004; The PredictProtein server. Nucleic Acids Res32:W321–W326 [CrossRef][PubMed]
    [Google Scholar]
  52. Sahukhal G. S., Elasri M. O.. 2014; Identification and characterization of an operon, msaABCR, that controls virulence and biofilm development in Staphylococcus aureus . BMC Microbiol14:154 [CrossRef][PubMed]
    [Google Scholar]
  53. Sahukhal G. S., Batte J. L., Elasri M. O.. 2015; msaABCR operon positively regulates biofilm development by repressing proteases and autolysis in Staphylococcus aureus . FEMS Microbiol Lett362:1–10 [CrossRef][PubMed]
    [Google Scholar]
  54. Samanta D., Elasri M. O.. 2014; The msaABCR operon regulates resistance in vancomycin-intermediate Staphylococcus aureus strains. Antimicrob Agents Chemother58:6685–6695 [CrossRef][PubMed]
    [Google Scholar]
  55. Sambanthamoorthy K., Smeltzer M. S., Elasri M. O.. 2006; Identification and characterization of msa (SA1233), a gene involved in expression of SarA and several virulence factors in Staphylococcus aureus . Microbiology152:2559–2572 [CrossRef][PubMed]
    [Google Scholar]
  56. Sambanthamoorthy K., Schwartz A., Nagarajan V., Elasri M. O.. 2008; The role of msa in Staphylococcus aureus biofilm formation. BMC Microbiol8:221 [CrossRef][PubMed]
    [Google Scholar]
  57. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Concentration of DNA solution. In Molecular Cloning: a Laboratory Manual pC1, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  58. Sau S., Bhasin N., Wann E. R., Lee J. C., Foster T. J., Lee C. Y.. 1997a; The Staphylococcus aureus allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes. Microbiology143:2395–2405 [CrossRef][PubMed]
    [Google Scholar]
  59. Sau S., Sun J., Lee C. Y.. 1997b; Molecular characterization and transcriptional analysis of type 8 capsule genes in Staphylococcus aureus . J Bacteriol179:1614–1621[PubMed]
    [Google Scholar]
  60. Schneider C. A., Rasband W. S., Eliceiri K. W.. 2012; NIH Image to ImageJ: 25 years of image analysis. Nat Methods9:671–675 [CrossRef][PubMed]
    [Google Scholar]
  61. Sengupta M., Jain V., Wilkinson B. J., Jayaswal R. K.. 2012; Chromatin immunoprecipitation identifies genes under direct VraSR regulation in Staphylococcus aureus . Can J Microbiol58:703–708 [CrossRef][PubMed]
    [Google Scholar]
  62. Shivers R. P., Sonenshein A. L.. 2004; Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol Microbiol53:599–611 [CrossRef][PubMed]
    [Google Scholar]
  63. Somerville G. A., Proctor R. A.. 2009; At the crossroads of bacterial metabolism and virulence factor synthesis in staphylococci. Microbiol Mol Biol Rev73:233–248 [CrossRef][PubMed]
    [Google Scholar]
  64. Sompolinsky D., Samra Z., Karakawa W. W., Vann W. F., Schneerson R., Malik Z.. 1985; Encapsulation and capsular types in isolates of Staphylococcus aureus from different sources and relationship to phage types. J Clin Microbiol22:828–834[PubMed]
    [Google Scholar]
  65. Sun F., Ji Q., Jones M. B., Deng X., Liang H., Frank B., Telser J., Peterson S. N., Bae T., He C.. 2012; AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus . J Am Chem Soc134:305–314 [CrossRef][PubMed]
    [Google Scholar]
  66. Thakker M., Park J. S., Carey V., Lee J. C.. 1998; Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infect Immun66:5183–5189[PubMed]
    [Google Scholar]
  67. Tuchscherr L., Loffler B., Buzzola F. R., Sordelli D. O.. 2010; Staphylococcus aureus adaptation to the host and persistence: role of loss of capsular polysaccharide expression. Future Microbiol5:1823–1832 [CrossRef][PubMed]
    [Google Scholar]
  68. Voyich J. M., Braughton K. R., Sturdevant D. E., Whitney A. R., Said-Salim B., Porcella S. F., Long R. D., Dorward D. W., Gardner D. J., other authors. 2005; Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J Immunol175:3907–3919 [CrossRef][PubMed]
    [Google Scholar]
  69. Wann E. R., Dassy B., Fournier J. M., Foster T. J.. 1999; Genetic analysis of the cap5 locus of Staphylococcus aureus . FEMS Microbiol Lett170:97–103 [CrossRef][PubMed]
    [Google Scholar]
  70. Watts A., Ke D., Wang Q., Pillay A., Nicholson-Weller A., Lee J. C.. 2005; Staphylococcus aureus strains that express serotype 5 or serotype 8 capsular polysaccharides differ in virulence. Infect Immun73:3502–3511 [CrossRef][PubMed]
    [Google Scholar]
  71. Zhao L., Xue T., Shang F., Sun H., Sun B.. 2010; Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect Immun78:3506–3515 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000243
Loading
/content/journal/micro/10.1099/mic.0.000243
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error