1887

Abstract

It is important to study commensal populations of because they appear to be the reservoir of both extra-intestinal pathogenic and antibiotic resistant strains of . We studied 279 dominant faecal strains of from 243 adults living in the community in the Paris area in 2010. The phylogenetic group and subgroup [sequence type complex (STc)] of the isolates and the presence of 20 virulence genes were determined by PCR assays. The O-types and resistance to 18 antibiotics were assessed phenotypically. The B2 group was the most frequently recovered (34.0 %), followed by the A group (28.7 %), and other groups were more rare. The most prevalent B2 subgroups were II (STc73), IV (STc141), IX (STc95) and I (STc131), with 22.1, 21.1, 16.8 and 13.7 %, respectively, of the B2 group strains. Virulence factors (VFs) were more common in B2 group than other strains. One or more resistances were found in 125 strains (44.8 % of the collection) but only six (2.2 % of the collection) were multiresistant; no extended-spectrum beta-lactamase-producing strain was isolated. The C phylogroup and clonal group A strains were the most resistant. No trade-off between virulence and resistance was evidenced. We compared these strains with collections of strains gathered under the same conditions 30 and 10 years ago. There has been a parallel and linked increase in the frequency of B2 group strains (from 9.4 % in 1980, to 22.7 % in 2000 and 34.0 % in 2010) and of VFs. Antibiotic resistance also increased, from 22.6 % of strains resistant to at least one antibiotic in 1980, to 31.8 % in 2000 and 44.8 % in 2010; resistance to streptomycin, however, remained stable. Commensal human populations have clearly evolved substantially over time, presumably reflecting changes in human practices, and particularly increasing antibiotic use.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000242
2016-04-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/4/642.html?itemId=/content/journal/micro/10.1099/mic.0.000242&mimeType=html&fmt=ahah

References

  1. Alhashash F., Weston V., Diggle M., McNally A.. 2013; Multidrug-resistant Escherichia coli bacteremia. Emerg Infect Dis19:1699–1701 [CrossRef][PubMed]
    [Google Scholar]
  2. Bailey J. K., Pinyon J. L., Anantham S., Hall R. M.. 2010a; Commensal Escherichia coli of healthy humans: a reservoir for antibiotic-resistance determinants. J Med Microbiol59:1331–1339 [CrossRef][PubMed]
    [Google Scholar]
  3. Bailey J. K., Pinyon J. L., Anantham S., Hall R. M.. 2010b; Distribution of human commensal Escherichia coli phylogenetic groups. J Clin Microbiol48:3455–3456 [CrossRef][PubMed]
    [Google Scholar]
  4. Bengtsson S., Naseer U., Sundsfjord A., Kahlmeter G., Sundqvist M.. 2012; Sequence types and plasmid carriage of uropathogenic Escherichia coli devoid of phenotypically detectable resistance. J Antimicrob Chemother67:69–73 [CrossRef][PubMed]
    [Google Scholar]
  5. Benjamini Y., Hochberg Y.. 1995; Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B57:289–300
    [Google Scholar]
  6. Berg R. D.. 1996; The indigenous gastrointestinal microflora. Trends Microbiol4:430–435 [CrossRef][PubMed]
    [Google Scholar]
  7. Bert F., Johnson J. R., Ouattara B., Leflon-Guibout V., Johnston B., Marcon E., Valla D., Moreau R., Nicolas-Chanoine M. H.. 2010; Genetic diversity and virulence profiles of Escherichia coli isolates causing spontaneous bacterial peritonitis and bacteremia in patients with cirrhosis. J Clin Microbiol48:2709–2714 [CrossRef][PubMed]
    [Google Scholar]
  8. Bidet P., Mahjoub-Messai F., Blanco J., Blanco J., Dehem M., Aujard Y., Bingen E., Bonacorsi S.. 2007; Combined multilocus sequence typing and O serogrouping distinguishes Escherichia coli subtypes associated with infant urosepsis and/or meningitis. J Infect Dis196:297–303 [CrossRef][PubMed]
    [Google Scholar]
  9. Carlet J.. 2012; The gut is the epicentre of antibiotic resistance. Antimicrob Resist Infect Control1:39 [CrossRef][PubMed]
    [Google Scholar]
  10. Chiew Y. F., Yeo S. F., Hall L. M., Livermore D. M.. 1998; Can susceptibility to an antimicrobial be restored by halting its use? The case of streptomycin versus Enterobacteriaceae. J Antimicrob Chemother41:247–251 [CrossRef][PubMed]
    [Google Scholar]
  11. Clermont O., Lescat M., O'Brien C. L., Gordon D. M., Tenaillon O., Denamur E.. 2008; Evidence for a human-specific Escherichia coli clone. Environ Microbiol10:1000–1006 [CrossRef][PubMed]
    [Google Scholar]
  12. Clermont O., Gordon D. M., Brisse S., Walk S. T., Denamur E.. 2011a; Characterization of the cryptic Escherichia lineages: rapid identification and prevalence. Environ Microbiol13:2468–2477 [CrossRef][PubMed]
    [Google Scholar]
  13. Clermont O., Olier M., Hoede C., Diancourt L., Brisse S., Keroudean M., Glodt J., Picard B., Oswald E., Denamur E.. 2011b; Animal and human pathogenic Escherichia coli strains share common genetic backgrounds. Infect Genet Evol11:654–662 [CrossRef][PubMed]
    [Google Scholar]
  14. Clermont O., Christenson J. K., Denamur E., Gordon D. M.. 2013; The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep5:58–65 [CrossRef][PubMed]
    [Google Scholar]
  15. Clermont O., Christenson J. K., Daubié A. S., Gordon D. M., Denamur E.. 2014; Development of an allele-specific PCR for Escherichia coli B2 sub-typing, a rapid and easy to perform substitute of multilocus sequence typing. J Microbiol Methods101:24–27 [CrossRef][PubMed]
    [Google Scholar]
  16. Clermont O., Gordon D., Denamur E.. 2015; Guide to the various phylogenetic classification schemes for Escherichia coli and the correspondence among schemes. Microbiology161:980–988 [CrossRef][PubMed]
    [Google Scholar]
  17. Desjardins P., Picard B., Kaltenböck B., Elion J., Denamur E.. 1995; Sex in Escherichia coli does not disrupt the clonal structure of the population: evidence from random amplified polymorphic DNA and restriction-fragment-length polymorphism. J Mol Evol41:440–448 [CrossRef][PubMed]
    [Google Scholar]
  18. Diard M., Garry L., Selva M., Mosser T., Denamur E., Matic I.. 2010; Pathogenicity-associated islands in extraintestinal pathogenic Escherichia coli are fitness elements involved in intestinal colonization. J Bacteriol192:4885–4893 [CrossRef][PubMed]
    [Google Scholar]
  19. Duriez P., Clermont O., Bonacorsi S., Bingen E., Chaventré A., Elion J., Picard B., Denamur E.. 2001; Commensal Escherichia coli isolates are phylogenetically distributed among geographically distinct human populations. Microbiology147:1671–1676 [CrossRef][PubMed]
    [Google Scholar]
  20. Escobar-Páramo P., Clermont O., Blanc-Potard A. B., Bui H., Le Bouguénec C., Denamur E.. 2004a; A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol Biol Evol21:1085–1094 [CrossRef][PubMed]
    [Google Scholar]
  21. Escobar-Páramo P., Grenet K., Le Menac'h A., Rode L., Salgado E., Amorin C., Gouriou S., Picard B., Rahimy M. C., other authors. 2004b; Large-scale population structure of human commensal Escherichia coli isolates. Appl Environ Microbiol70:5698–5700 [CrossRef][PubMed]
    [Google Scholar]
  22. Gibreel T. M., Dodgson A. R., Cheesbrough J., Fox A. J., Bolton F. J., Upton M.. 2012; Population structure, virulence potential and antibiotic susceptibility of uropathogenic Escherichia coli from Northwest England. J Antimicrob Chemother67:346–356 [CrossRef][PubMed]
    [Google Scholar]
  23. Gordon D. M., Stern S. E., Collignon P. J.. 2005; Influence of the age and sex of human hosts on the distribution of Escherichia coli ECOR groups and virulence traits. Microbiology151:15–23 [CrossRef][PubMed]
    [Google Scholar]
  24. Guinée P.A.M., Jansen W. H.. 1981; Escherichia coli associated with neonatal diarrhoea in piglets and calves. In Laboratory Diagnosis in Neonatal Calf and Pig Diarrhoea, Current Topics in Veterinary and Animal Science pp126–162 Edited by Leeww P. M., Guinée P. A. M.. The Hague: Martinus-Nijhoff; [CrossRef]
    [Google Scholar]
  25. Johnson J. R., Owens K., Manges A. R., Riley L. W.. 2004; Rapid and specific detection of Escherichia coli clonal group A by gene-specific PCR. J Clin Microbiol42:2618–2622 [CrossRef][PubMed]
    [Google Scholar]
  26. Johnson J. R., Johnston B., Kuskowski M. A., Nougayrede J. P., Oswald E.. 2008; Molecular epidemiology and phylogenetic distribution of the Escherichia coli pks genomic island. J Clin Microbiol46:3906–3911 [CrossRef][PubMed]
    [Google Scholar]
  27. Johnson J. R., Clermont O., Johnston B., Clabots C., Tchesnokova V., Sokurenko E., Junka A. F., Maczynska B., Denamur E.. 2014; Rapid and specific detection, molecular epidemiology, and experimental virulence of the O16 subgroup within Escherichia coli sequence type 131. J Clin Microbiol52:1358–1365 [CrossRef][PubMed]
    [Google Scholar]
  28. Kaper J. B., Nataro J. P., Mobley H. L.. 2004; Pathogenic Escherichia coli. Nat Rev Microbiol2:123–140 [CrossRef][PubMed]
    [Google Scholar]
  29. Le Gall T., Clermont O., Gouriou S., Picard B., Nassif X., Denamur E., Tenaillon O.. 2007; Extraintestinal virulence is a coincidental by-product of commensalism in B2 phylogenetic group Escherichia coli strains. Mol Biol Evol24:2373–2384 [CrossRef][PubMed]
    [Google Scholar]
  30. Lefort A., Panhard X., Clermont O., Woerther P. L., Branger C., Mentré F., Fantin B., Wolff M., Denamur E., COLIBAFI Group. 2011; Host factors and portal of entry outweigh bacterial determinants to predict the severity of Escherichia coli bacteremia. J Clin Microbiol49:777–783 [CrossRef][PubMed]
    [Google Scholar]
  31. Lescat M., Clermont O., Woerther P. L., Glodt J., Dion S., Skurnik D., Djossou F., Dupont C., Perroz G., other authors. 2013; Commensal Escherichia coli strains in Guiana reveal a high genetic diversity with host-dependant population structure. Environ Microbiol Rep5:49–57 [CrossRef][PubMed]
    [Google Scholar]
  32. Li B., Sun J. Y., Han L. Z., Huang X. H., Fu Q., Ni Y. X.. 2010; Phylogenetic groups and pathogenicity island markers in fecal Escherichia coli isolates from asymptomatic humans in China. Appl Environ Microbiol76:6698–6700 [CrossRef][PubMed]
    [Google Scholar]
  33. Mahjoub-Messai F., Bidet P., Caro V., Diancourt L., Biran V., Aujard Y., Bingen E., Bonacorsi S.. 2011; Escherichia coli isolates causing bacteremia via gut translocation and urinary tract infection in young infants exhibit different virulence genotypes. J Infect Dis203:1844–1849 [CrossRef][PubMed]
    [Google Scholar]
  34. Manges A. R., Johnson J. R., Foxman B., O'Bryan T. T., Fullerton K. E., Riley L. W.. 2001; Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N Engl J Med345:1007–1013 [CrossRef][PubMed]
    [Google Scholar]
  35. Messika J., Magdoud F., Clermont O., Margetis D., Gaudry S., Roux D., Branger C., Dreyfuss D., Denamur E., Ricard J. D.. 2012; Pathophysiology of Escherichia coli ventilator-associated pneumonia: implication of highly virulent extraintestinal pathogenic strains. Intensive Care Med38:2007–2016 [CrossRef][PubMed]
    [Google Scholar]
  36. Moissenet D., Salauze B., Clermont O., Bingen E., Arlet G., Denamur E., Mérens A., Mitanchez D., Vu-Thien H.. 2010; Meningitis caused by Escherichia coli producing TEM-52 extended-spectrum beta-lactamase within an extensive outbreak in a neonatal ward: epidemiological investigation and characterization of the strain. J Clin Microbiol48:2459–2463 [CrossRef][PubMed]
    [Google Scholar]
  37. Nicolas-Chanoine M. H., Gruson C., Bialek-Davenet S., Bertrand X., Thomas-Jean F., Bert F., Moyat M., Meiller E., Marcon E., other authors. 2013; 10-Fold increase (2006-11) in the rate of healthy subjects with extended-spectrum β-lactamase-producing Escherichia coli faecal carriage in a Parisian check-up centre. J Antimicrob Chemother68:562–568 [CrossRef][PubMed]
    [Google Scholar]
  38. Nicolas-Chanoine M. H., Bertrand X., Madec J. Y.. 2014; Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev27:543–574 [CrossRef][PubMed]
    [Google Scholar]
  39. Nowrouzian F. L., Wold A. E., Adlerberth I.. 2005; Escherichia coli strains belonging to phylogenetic group B2 have superior capacity to persist in the intestinal microflora of infants. J Infect Dis191:1078–1083 [CrossRef][PubMed]
    [Google Scholar]
  40. Partridge S. R., Tsafnat G., Coiera E., Iredell J. R.. 2009; Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev33:757–784 [CrossRef][PubMed]
    [Google Scholar]
  41. Russo T. A., Johnson J. R.. 2003; Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect5:449–456 [CrossRef][PubMed]
    [Google Scholar]
  42. Schubert S., Darlu P., Clermont O., Wieser A., Magistro G., Hoffmann C., Weinert K., Tenaillon O., Matic I., Denamur E.. 2009; Role of intraspecies recombination in the spread of pathogenicity islands within the Escherichia coli species. PLoS Pathog5:e1000257 [CrossRef][PubMed]
    [Google Scholar]
  43. Smati M., Clermont O., Le Gal F., Schichmanoff O., Jauréguy F., Eddi A., Denamur E., Picard B., Coliville Group. 2013; Real-time PCR for quantitative analysis of human commensal Escherichia coli populations reveals a high frequency of subdominant phylogroups. Appl Environ Microbiol79:5005–5012 [CrossRef][PubMed]
    [Google Scholar]
  44. Tapader R., Chatterjee S., Singh A. K., Dayma P., Haldar S., Pal A., Basu S.. 2014; The high prevalence of serine protease autotransporters of Enterobacteriaceae (SPATEs) in Escherichia coli causing neonatal septicemia. Eur J Clin Microbiol Infect Dis33:2015–2024 [CrossRef][PubMed]
    [Google Scholar]
  45. Tenaillon O., Skurnik D., Picard B., Denamur E.. 2010; The population genetics of commensal Escherichia coli. Nat Rev Microbiol8:207–217 [CrossRef][PubMed]
    [Google Scholar]
  46. Unno T., Han D., Jang J., Lee S. N., Ko G., Choi H. Y., Kim J. H., Sadowsky M. J., Hur H. G.. 2009; Absence of Escherichia coli phylogenetic group B2 strains in humans and domesticated animals from Jeonnam Province, Republic of Korea. Appl Environ Microbiol75:5659–5666 [CrossRef][PubMed]
    [Google Scholar]
  47. Walk S. T., Alm E. W., Gordon D. M., Ram J. L., Toranzos G. A., Tiedje J. M., Whittam T. S.. 2009; Cryptic lineages of the genus Escherichia. Appl Environ Microbiol75:6534–6544 [CrossRef][PubMed]
    [Google Scholar]
  48. Woerther P. L., Angebault C., Jacquier H., Clermont O., El Mniai A., Moreau B., Djossou F., Peroz G., Catzeflis F., other authors. 2013; Characterization of fecal extended-spectrum-β-lactamase-producing Escherichia coli in a remote community during a long time period. Antimicrob Agents Chemother57:5060–5066 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000242
Loading
/content/journal/micro/10.1099/mic.0.000242
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error