1887

Abstract

It is important to study commensal populations of because they appear to be the reservoir of both extra-intestinal pathogenic and antibiotic resistant strains of . We studied 279 dominant faecal strains of from 243 adults living in the community in the Paris area in 2010. The phylogenetic group and subgroup [sequence type complex (STc)] of the isolates and the presence of 20 virulence genes were determined by PCR assays. The O-types and resistance to 18 antibiotics were assessed phenotypically. The B2 group was the most frequently recovered (34.0 %), followed by the A group (28.7 %), and other groups were more rare. The most prevalent B2 subgroups were II (STc73), IV (STc141), IX (STc95) and I (STc131), with 22.1, 21.1, 16.8 and 13.7 %, respectively, of the B2 group strains. Virulence factors (VFs) were more common in B2 group than other strains. One or more resistances were found in 125 strains (44.8 % of the collection) but only six (2.2 % of the collection) were multiresistant; no extended-spectrum beta-lactamase-producing strain was isolated. The C phylogroup and clonal group A strains were the most resistant. No trade-off between virulence and resistance was evidenced. We compared these strains with collections of strains gathered under the same conditions 30 and 10 years ago. There has been a parallel and linked increase in the frequency of B2 group strains (from 9.4 % in 1980, to 22.7 % in 2000 and 34.0 % in 2010) and of VFs. Antibiotic resistance also increased, from 22.6 % of strains resistant to at least one antibiotic in 1980, to 31.8 % in 2000 and 44.8 % in 2010; resistance to streptomycin, however, remained stable. Commensal human populations have clearly evolved substantially over time, presumably reflecting changes in human practices, and particularly increasing antibiotic use.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000242
2016-04-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/4/642.html?itemId=/content/journal/micro/10.1099/mic.0.000242&mimeType=html&fmt=ahah

References

  1. Alhashash F., Weston V., Diggle M., McNally A.. ( 2013;). Multidrug-resistant Escherichia coli bacteremia. Emerg Infect Dis 19: 1699–1701 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bailey J. K., Pinyon J. L., Anantham S., Hall R. M.. ( 2010a;). Commensal Escherichia coli of healthy humans: a reservoir for antibiotic-resistance determinants. J Med Microbiol 59: 1331–1339 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bailey J. K., Pinyon J. L., Anantham S., Hall R. M.. ( 2010b;). Distribution of human commensal Escherichia coli phylogenetic groups. J Clin Microbiol 48: 3455–3456 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bengtsson S., Naseer U., Sundsfjord A., Kahlmeter G., Sundqvist M.. ( 2012;). Sequence types and plasmid carriage of uropathogenic Escherichia coli devoid of phenotypically detectable resistance. J Antimicrob Chemother 67: 69–73 [CrossRef] [PubMed].
    [Google Scholar]
  5. Benjamini Y., Hochberg Y.. ( 1995;). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57: 289–300.
    [Google Scholar]
  6. Berg R. D.. ( 1996;). The indigenous gastrointestinal microflora. Trends Microbiol 4: 430–435 [CrossRef] [PubMed].
    [Google Scholar]
  7. Bert F., Johnson J. R., Ouattara B., Leflon-Guibout V., Johnston B., Marcon E., Valla D., Moreau R., Nicolas-Chanoine M. H.. ( 2010;). Genetic diversity and virulence profiles of Escherichia coli isolates causing spontaneous bacterial peritonitis and bacteremia in patients with cirrhosis. J Clin Microbiol 48: 2709–2714 [CrossRef] [PubMed].
    [Google Scholar]
  8. Bidet P., Mahjoub-Messai F., Blanco J., Blanco J., Dehem M., Aujard Y., Bingen E., Bonacorsi S.. ( 2007;). Combined multilocus sequence typing and O serogrouping distinguishes Escherichia coli subtypes associated with infant urosepsis and/or meningitis. J Infect Dis 196: 297–303 [CrossRef] [PubMed].
    [Google Scholar]
  9. Carlet J.. ( 2012;). The gut is the epicentre of antibiotic resistance. Antimicrob Resist Infect Control 1: 39 [CrossRef] [PubMed].
    [Google Scholar]
  10. Chiew Y. F., Yeo S. F., Hall L. M., Livermore D. M.. ( 1998;). Can susceptibility to an antimicrobial be restored by halting its use? The case of streptomycin versus Enterobacteriaceae. J Antimicrob Chemother 41: 247–251 [CrossRef] [PubMed].
    [Google Scholar]
  11. Clermont O., Lescat M., O'Brien C. L., Gordon D. M., Tenaillon O., Denamur E.. ( 2008;). Evidence for a human-specific Escherichia coli clone. Environ Microbiol 10: 1000–1006 [CrossRef] [PubMed].
    [Google Scholar]
  12. Clermont O., Gordon D. M., Brisse S., Walk S. T., Denamur E.. ( 2011a;). Characterization of the cryptic Escherichia lineages: rapid identification and prevalence. Environ Microbiol 13: 2468–2477 [CrossRef] [PubMed].
    [Google Scholar]
  13. Clermont O., Olier M., Hoede C., Diancourt L., Brisse S., Keroudean M., Glodt J., Picard B., Oswald E., Denamur E.. ( 2011b;). Animal and human pathogenic Escherichia coli strains share common genetic backgrounds. Infect Genet Evol 11: 654–662 [CrossRef] [PubMed].
    [Google Scholar]
  14. Clermont O., Christenson J. K., Denamur E., Gordon D. M.. ( 2013;). The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 5: 58–65 [CrossRef] [PubMed].
    [Google Scholar]
  15. Clermont O., Christenson J. K., Daubié A. S., Gordon D. M., Denamur E.. ( 2014;). Development of an allele-specific PCR for Escherichia coli B2 sub-typing, a rapid and easy to perform substitute of multilocus sequence typing. J Microbiol Methods 101: 24–27 [CrossRef] [PubMed].
    [Google Scholar]
  16. Clermont O., Gordon D., Denamur E.. ( 2015;). Guide to the various phylogenetic classification schemes for Escherichia coli and the correspondence among schemes. Microbiology 161: 980–988 [CrossRef] [PubMed].
    [Google Scholar]
  17. Desjardins P., Picard B., Kaltenböck B., Elion J., Denamur E.. ( 1995;). Sex in Escherichia coli does not disrupt the clonal structure of the population: evidence from random amplified polymorphic DNA and restriction-fragment-length polymorphism. J Mol Evol 41: 440–448 [CrossRef] [PubMed].
    [Google Scholar]
  18. Diard M., Garry L., Selva M., Mosser T., Denamur E., Matic I.. ( 2010;). Pathogenicity-associated islands in extraintestinal pathogenic Escherichia coli are fitness elements involved in intestinal colonization. J Bacteriol 192: 4885–4893 [CrossRef] [PubMed].
    [Google Scholar]
  19. Duriez P., Clermont O., Bonacorsi S., Bingen E., Chaventré A., Elion J., Picard B., Denamur E.. ( 2001;). Commensal Escherichia coli isolates are phylogenetically distributed among geographically distinct human populations. Microbiology 147: 1671–1676 [CrossRef] [PubMed].
    [Google Scholar]
  20. Escobar-Páramo P., Clermont O., Blanc-Potard A. B., Bui H., Le Bouguénec C., Denamur E.. ( 2004a;). A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol Biol Evol 21: 1085–1094 [CrossRef] [PubMed].
    [Google Scholar]
  21. Escobar-Páramo P., Grenet K., Le Menac'h A., Rode L., Salgado E., Amorin C., Gouriou S., Picard B., Rahimy M. C., other authors. ( 2004b;). Large-scale population structure of human commensal Escherichia coli isolates. Appl Environ Microbiol 70: 5698–5700 [CrossRef] [PubMed].
    [Google Scholar]
  22. Gibreel T. M., Dodgson A. R., Cheesbrough J., Fox A. J., Bolton F. J., Upton M.. ( 2012;). Population structure, virulence potential and antibiotic susceptibility of uropathogenic Escherichia coli from Northwest England. J Antimicrob Chemother 67: 346–356 [CrossRef] [PubMed].
    [Google Scholar]
  23. Gordon D. M., Stern S. E., Collignon P. J.. ( 2005;). Influence of the age and sex of human hosts on the distribution of Escherichia coli ECOR groups and virulence traits. Microbiology 151: 15–23 [CrossRef] [PubMed].
    [Google Scholar]
  24. Guinée P.A.M., Jansen W. H.. ( 1981;). Escherichia coli associated with neonatal diarrhoea in piglets and calves. . In Laboratory Diagnosis in Neonatal Calf and Pig Diarrhoea, Current Topics in Veterinary and Animal Science, pp. 126–162. Edited by Leeww P. M., Guinée P. A. M.. The Hague: Martinus-Nijhoff; [CrossRef].
    [Google Scholar]
  25. Johnson J. R., Owens K., Manges A. R., Riley L. W.. ( 2004;). Rapid and specific detection of Escherichia coli clonal group A by gene-specific PCR. J Clin Microbiol 42: 2618–2622 [CrossRef] [PubMed].
    [Google Scholar]
  26. Johnson J. R., Johnston B., Kuskowski M. A., Nougayrede J. P., Oswald E.. ( 2008;). Molecular epidemiology and phylogenetic distribution of the Escherichia coli pks genomic island. J Clin Microbiol 46: 3906–3911 [CrossRef] [PubMed].
    [Google Scholar]
  27. Johnson J. R., Clermont O., Johnston B., Clabots C., Tchesnokova V., Sokurenko E., Junka A. F., Maczynska B., Denamur E.. ( 2014;). Rapid and specific detection, molecular epidemiology, and experimental virulence of the O16 subgroup within Escherichia coli sequence type 131. J Clin Microbiol 52: 1358–1365 [CrossRef] [PubMed].
    [Google Scholar]
  28. Kaper J. B., Nataro J. P., Mobley H. L.. ( 2004;). Pathogenic Escherichia coli. Nat Rev Microbiol 2: 123–140 [CrossRef] [PubMed].
    [Google Scholar]
  29. Le Gall T., Clermont O., Gouriou S., Picard B., Nassif X., Denamur E., Tenaillon O.. ( 2007;). Extraintestinal virulence is a coincidental by-product of commensalism in B2 phylogenetic group Escherichia coli strains. Mol Biol Evol 24: 2373–2384 [CrossRef] [PubMed].
    [Google Scholar]
  30. Lefort A., Panhard X., Clermont O., Woerther P. L., Branger C., Mentré F., Fantin B., Wolff M., Denamur E., COLIBAFI Group. ( 2011;). Host factors and portal of entry outweigh bacterial determinants to predict the severity of Escherichia coli bacteremia. J Clin Microbiol 49: 777–783 [CrossRef] [PubMed].
    [Google Scholar]
  31. Lescat M., Clermont O., Woerther P. L., Glodt J., Dion S., Skurnik D., Djossou F., Dupont C., Perroz G., other authors. ( 2013;). Commensal Escherichia coli strains in Guiana reveal a high genetic diversity with host-dependant population structure. Environ Microbiol Rep 5: 49–57 [CrossRef] [PubMed].
    [Google Scholar]
  32. Li B., Sun J. Y., Han L. Z., Huang X. H., Fu Q., Ni Y. X.. ( 2010;). Phylogenetic groups and pathogenicity island markers in fecal Escherichia coli isolates from asymptomatic humans in China. Appl Environ Microbiol 76: 6698–6700 [CrossRef] [PubMed].
    [Google Scholar]
  33. Mahjoub-Messai F., Bidet P., Caro V., Diancourt L., Biran V., Aujard Y., Bingen E., Bonacorsi S.. ( 2011;). Escherichia coli isolates causing bacteremia via gut translocation and urinary tract infection in young infants exhibit different virulence genotypes. J Infect Dis 203: 1844–1849 [CrossRef] [PubMed].
    [Google Scholar]
  34. Manges A. R., Johnson J. R., Foxman B., O'Bryan T. T., Fullerton K. E., Riley L. W.. ( 2001;). Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N Engl J Med 345: 1007–1013 [CrossRef] [PubMed].
    [Google Scholar]
  35. Messika J., Magdoud F., Clermont O., Margetis D., Gaudry S., Roux D., Branger C., Dreyfuss D., Denamur E., Ricard J. D.. ( 2012;). Pathophysiology of Escherichia coli ventilator-associated pneumonia: implication of highly virulent extraintestinal pathogenic strains. Intensive Care Med 38: 2007–2016 [CrossRef] [PubMed].
    [Google Scholar]
  36. Moissenet D., Salauze B., Clermont O., Bingen E., Arlet G., Denamur E., Mérens A., Mitanchez D., Vu-Thien H.. ( 2010;). Meningitis caused by Escherichia coli producing TEM-52 extended-spectrum beta-lactamase within an extensive outbreak in a neonatal ward: epidemiological investigation and characterization of the strain. J Clin Microbiol 48: 2459–2463 [CrossRef] [PubMed].
    [Google Scholar]
  37. Nicolas-Chanoine M. H., Gruson C., Bialek-Davenet S., Bertrand X., Thomas-Jean F., Bert F., Moyat M., Meiller E., Marcon E., other authors. ( 2013;). 10-Fold increase (2006-11) in the rate of healthy subjects with extended-spectrum β-lactamase-producing Escherichia coli faecal carriage in a Parisian check-up centre. J Antimicrob Chemother 68: 562–568 [CrossRef] [PubMed].
    [Google Scholar]
  38. Nicolas-Chanoine M. H., Bertrand X., Madec J. Y.. ( 2014;). Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 27: 543–574 [CrossRef] [PubMed].
    [Google Scholar]
  39. Nowrouzian F. L., Wold A. E., Adlerberth I.. ( 2005;). Escherichia coli strains belonging to phylogenetic group B2 have superior capacity to persist in the intestinal microflora of infants. J Infect Dis 191: 1078–1083 [CrossRef] [PubMed].
    [Google Scholar]
  40. Partridge S. R., Tsafnat G., Coiera E., Iredell J. R.. ( 2009;). Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 33: 757–784 [CrossRef] [PubMed].
    [Google Scholar]
  41. Russo T. A., Johnson J. R.. ( 2003;). Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect 5: 449–456 [CrossRef] [PubMed].
    [Google Scholar]
  42. Schubert S., Darlu P., Clermont O., Wieser A., Magistro G., Hoffmann C., Weinert K., Tenaillon O., Matic I., Denamur E.. ( 2009;). Role of intraspecies recombination in the spread of pathogenicity islands within the Escherichia coli species. PLoS Pathog 5: e1000257 [CrossRef] [PubMed].
    [Google Scholar]
  43. Smati M., Clermont O., Le Gal F., Schichmanoff O., Jauréguy F., Eddi A., Denamur E., Picard B., Coliville Group. ( 2013;). Real-time PCR for quantitative analysis of human commensal Escherichia coli populations reveals a high frequency of subdominant phylogroups. Appl Environ Microbiol 79: 5005–5012 [CrossRef] [PubMed].
    [Google Scholar]
  44. Tapader R., Chatterjee S., Singh A. K., Dayma P., Haldar S., Pal A., Basu S.. ( 2014;). The high prevalence of serine protease autotransporters of Enterobacteriaceae (SPATEs) in Escherichia coli causing neonatal septicemia. Eur J Clin Microbiol Infect Dis 33: 2015–2024 [CrossRef] [PubMed].
    [Google Scholar]
  45. Tenaillon O., Skurnik D., Picard B., Denamur E.. ( 2010;). The population genetics of commensal Escherichia coli. Nat Rev Microbiol 8: 207–217 [CrossRef] [PubMed].
    [Google Scholar]
  46. Unno T., Han D., Jang J., Lee S. N., Ko G., Choi H. Y., Kim J. H., Sadowsky M. J., Hur H. G.. ( 2009;). Absence of Escherichia coli phylogenetic group B2 strains in humans and domesticated animals from Jeonnam Province, Republic of Korea. Appl Environ Microbiol 75: 5659–5666 [CrossRef] [PubMed].
    [Google Scholar]
  47. Walk S. T., Alm E. W., Gordon D. M., Ram J. L., Toranzos G. A., Tiedje J. M., Whittam T. S.. ( 2009;). Cryptic lineages of the genus Escherichia. Appl Environ Microbiol 75: 6534–6544 [CrossRef] [PubMed].
    [Google Scholar]
  48. Woerther P. L., Angebault C., Jacquier H., Clermont O., El Mniai A., Moreau B., Djossou F., Peroz G., Catzeflis F., other authors. ( 2013;). Characterization of fecal extended-spectrum-β-lactamase-producing Escherichia coli in a remote community during a long time period. Antimicrob Agents Chemother 57: 5060–5066 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000242
Loading
/content/journal/micro/10.1099/mic.0.000242
Loading

Data & Media loading...

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error