1887

Abstract

Dental caries is an infectious disease that is continuing to increase in prevalence, reducing the quality of life for millions worldwide as well as causing considerable expense, with an estimated US$108 billion spent on dental care in the USA each year. Oral probiotics are now being investigated to determine whether they could play a role in the prevention and treatment of this disease. strain JH is a potential probiotic candidate that produces multiple proteinaceous antimicrobials (bacteriocins), the inhibitory spectrum of which includes , one of the principal causative agents of dental caries. The genome of strain JH has previously been shown to contain the biosynthetic loci for the bacteriocins salivaricin A3, streptin and streptococcin SA-FF22. Here we show that strain JH also produces salivaricin E, a 32 aa lantibiotic with a mass of 3565.9 Da, which is responsible for the inhibition of growth. In addition, strain JH was shown to produce dextranase, an enzyme that hydrolyses (1 → 6)-α--glucosidic linkages, at levels higher than any other tested. testing showed that partial hydrolysis of the exopolymeric substances of , using strain JH dextranase, improved the anti- inhibitory activity of the lytic bacteriocin, zoocin A. The multiple bacteriocin and dextranase activities of strain JH support its candidature for development as an oral probiotic.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000237
2016-03-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/3/476.html?itemId=/content/journal/micro/10.1099/mic.0.000237&mimeType=html&fmt=ahah

References

  1. Aas J. A., Paster B. J., Stokes L. N., Olsen I., Dewhirst F. E.. 2005; Defining the normal bacterial flora of the oral cavity. J Clin Microbiol43:5721–5732 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Aoki H., Shiroza T., Hayakawa M., Sato S., Kuramitsu H. K.. 1986; Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect Immun53:587–594[PubMed]
    [Google Scholar]
  4. Araya M., Morelli L., Reid G., Sanders M. E., Stanton C., Pineiro M., Ben Embarek P.. 2002; Guidelines for the Evaluation of Probiotics in Food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, London, Ontario, Canada, April 30 and May 1 Geneva:http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf World Health Organization;
    [Google Scholar]
  5. Balakrishnan M., Simmonds R. S., Tagg J. R.. 2001; Diverse activity spectra of bacteriocin-like inhibitory substances having activity against mutans streptococci. Caries Res35:75–80 [CrossRef][PubMed]
    [Google Scholar]
  6. Burton J. P., Wescombe P. A., Moore C. J., Chilcott C. N., Tagg J. R.. 2006; Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Appl Environ Microbiol72:3050–3053 [CrossRef][PubMed]
    [Google Scholar]
  7. Chikindas M. L., Novák J., Caufield P. W., Schilling K., Tagg J. R.. 1997; Microbially-produced peptides having potential application to the prevention of dental caries. Int J Antimicrob Agents9:95–105 [CrossRef][PubMed]
    [Google Scholar]
  8. Donkersloot J. A., Harr R. J.. 1979; More sensitive test agar for detection of dextranase-producing oral streptococci and identification of two glucan synthesis-defective dextranase mutants of Streptococcus mutans 6715. J Clin Microbiol10:919–922[PubMed]
    [Google Scholar]
  9. Guédon E., Delorme C., Pons N., Cruaud C., Loux V., Couloux A., Gautier C., Sanchez N., Layec S., other authors. 2011; Complete genome sequence of the commensal Streptococcus salivarius strain JIM8777. J Bacteriol193:5024–5025 [CrossRef][PubMed]
    [Google Scholar]
  10. Hamada S., Slade H. D.. 1980; Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev44:331–384[PubMed]
    [Google Scholar]
  11. Hanada N., Kuramitsu H. K.. 1988; Isolation and characterization of the Streptococcus mutans gtfC gene, coding for synthesis of both soluble and insoluble glucans. Infect Immun56:1999–2005[PubMed]
    [Google Scholar]
  12. Hanada N., Kuramitsu H. K.. 1989; Isolation and characterization of the Streptococcus mutans gtfD gene, coding for primer-dependent soluble glucan synthesis. Infect Immun57:2079–2085[PubMed]
    [Google Scholar]
  13. Heng N. C. K., Stanton J. A.. 2010; Oral bacterial genome sequencing using the high-throughput Roche Genome Sequencer FLX system. In Methods in Molecular Biology, Oral biology: Molecular Techniques and Applications pp197–218 Edited by Seymour G. J., Cullinan M. P., Heng N. C. K.. New York: [CrossRef] Springer;
    [Google Scholar]
  14. Hillman J. D.. 2002; Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie van Leeuwenhoek82:361–366 [CrossRef][PubMed]
    [Google Scholar]
  15. Hubbard M. J., McHugh N. J.. 1996; Mitochondrial ATP synthase F1-β-subunit is a calcium-binding protein. FEBS Lett391:323–329 [CrossRef][PubMed]
    [Google Scholar]
  16. Hyink O., Balakrishnan M., Tagg J. R.. 2005; Streptococcus rattus strain BHT produces both a class I two-component lantibiotic and a class II bacteriocin. FEMS Microbiol Lett252:235–241 [CrossRef][PubMed]
    [Google Scholar]
  17. Hyink O., Wescombe P. A., Upton M., Ragland N., Burton J. P., Tagg J. R.. 2007; Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic strain Streptococcus salivarius K12. Appl Environ Microbiol73:1107–1113 [CrossRef][PubMed]
    [Google Scholar]
  18. James S. M., Tagg J. R.. 1991; The prevention of dental caries by BLIS-mediated inhibition of mutans streptococci. N Z Dent J87:80–83[PubMed]
    [Google Scholar]
  19. Kopec L. K., Vacca-Smith A. M., Bowen W. H.. 1997; Structural aspects of glucans formed in solution and on the surface of hydroxyapatite. Glycobiology7:929–934 [CrossRef][PubMed]
    [Google Scholar]
  20. Loesche W. J.. 1986; Role of Streptococcus mutans in human dental decay. Microbiol Rev50:353–380[PubMed]
    [Google Scholar]
  21. Mota-Meira M., Lacroix C., LaPointe G., Lavoie M. C.. 1997; Purification and structure of mutacin B-Ny266: a new lantibiotic produced by Streptococcus mutans. FEBS Lett410:275–279 [CrossRef][PubMed]
    [Google Scholar]
  22. Nagpal R., Kumar A., Kumar M., Behare P. V., Jain S., Yadav H.. 2012; Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett334:1–15 [CrossRef][PubMed]
    [Google Scholar]
  23. O'Connor E. B., O'Riordan B., Morgan S. M., Whelton H., O'Mullane D. M., Ross R. P., Hill C.. 2006; A lacticin 3147 enriched food ingredient reduces Streptococcus mutans isolated from the human oral cavity in saliva. J Appl Microbiol100:1251–1260 [CrossRef][PubMed]
    [Google Scholar]
  24. Power D. A., Burton J. P., Chilcott C. N., Dawes P. J., Tagg J. R.. 2008; Preliminary investigations of the colonisation of upper respiratory tract tissues of infants using a paediatric formulation of the oral probiotic Streptococcus salivarius K12. Eur J Clin Microbiol Infect Dis27:1261–1263 [CrossRef][PubMed]
    [Google Scholar]
  25. Simmonds R. S., Naidoo J., Jones C. L., Tagg J. R.. 1995; The streptococcal bacteriocin-like inhibitory substance, zoocin A, reduces the proportion of Streptococcus mutans in an artificial plaque. Microb Ecol Health Dis8:281–292 [CrossRef]
    [Google Scholar]
  26. Tagg J. R., Bannister L. V.. 1979; Fingerprinting β-haemolytic streptococci by their production of and sensitivity to bacteriocine-like inhibitors. J Med Microbiol12:397–411 [CrossRef][PubMed]
    [Google Scholar]
  27. Tagg J. R., Wannamaker L. W.. 1976; Genetic basis of streptococcin A-FF22 production. Antimicrob Agents Chemother10:299–306 [CrossRef][PubMed]
    [Google Scholar]
  28. Tompkins G. R., Tagg J. R.. 1987; Bacteriocin-like inhibitory activity associated with beta-hemolytic strains of Streptococcus salivarius. J Dent Res66:1321–1325 [CrossRef][PubMed]
    [Google Scholar]
  29. Wescombe P. A., Burton J. P., Cadieux P. A., Klesse N. A., Hyink O., Heng N. C. K., Chilcott C. N., Reid G., Tagg J. R.. 2006a; Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius. Antonie van Leeuwenhoek90:269–280 [CrossRef][PubMed]
    [Google Scholar]
  30. Wescombe P. A., Upton M., Dierksen K. P., Ragland N. L., Sivabalan S., Wirawan R. E., Inglis M. A., Moore C. J., Walker G. V., other authors. 2006b; Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl Environ Microbiol72:1459–1466 [CrossRef][PubMed]
    [Google Scholar]
  31. Wescombe P. A., Heng N. C. K., Burton J. P., Chilcott C. N., Tagg J. R.. 2009; Streptococcal bacteriocins and the case for Streptococcus salivarius as model oral probiotics. Future Microbiol4:819–835 [CrossRef][PubMed]
    [Google Scholar]
  32. Willey J. M., van der Donk W. A.. 2007; Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol61:477–501 [CrossRef][PubMed]
    [Google Scholar]
  33. Zahradnik R. T., Magnusson I., Walker C., McDonell E., Hillman C. H., Hillman J. D.. 2009; Preliminary assessment of safety and effectiveness in humans of ProBiora3, a probiotic mouthwash. J Appl Microbiol107:682–690 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000237
Loading
/content/journal/micro/10.1099/mic.0.000237
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error