1887

Abstract

The pathogenesis of depends on several virulence factors, including the anthrax toxin. Loss of the alternative sigma factor σ results in a coordinate decrease in expression of all three toxin subunits. Our observations suggest that loss of σ alters the activity of the master virulence regulator AtxA, but transcription is unaffected by loss of σ. σ-containing RNA polymerase does not appear to directly transcribe either or the toxin gene . As in , loss of σ in results in increased sensitivity to heat shock and transcription of , encoding σ, is induced by elevated temperature. Encoded immediately downstream of and part of a bicistronic message with is an anti-sigma factor, RsgI, which controls σ activity. Loss of RsgI has no direct effect on virulence gene expression. appears to be expressed from both the σ and σ promoters, and transcription from the σ promoter is likely more significant to virulence regulation. We propose a model in which σ can be induced in response to heat shock, whilst, independently, σ is produced under non-heat-shock, toxin-inducing conditions to indirectly regulate virulence gene expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000236
2016-03-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/3/564.html?itemId=/content/journal/micro/10.1099/mic.0.000236&mimeType=html&fmt=ahah

References

  1. Asai K., Ootsuji T., Obata K., Matsumoto T., Fujita Y., Sadaie Y.. 2007; Regulatory role of RsgI in sigI expression in Bacillus subtilis. Microbiology153:92–101 [CrossRef][PubMed]
    [Google Scholar]
  2. Bartkus J. M., Leppla S. H.. 1989; Transcriptional regulation of the protective antigen gene of Bacillus anthracis. Infect Immun57:2295–2300[PubMed]
    [Google Scholar]
  3. Biller S. J., Burkholder W. F.. 2009; The Bacillus subtilis SftA (YtpS) and SpoIIIE DNA translocases play distinct roles in growing cells to ensure faithful chromosome partitioning. Mol Microbiol74:790–809 [CrossRef][PubMed]
    [Google Scholar]
  4. Bongiorni C., Stoessel R., Perego M.. 2007; Negative regulation of Bacillus anthracis sporulation by the Spo0E family of phosphatases. J Bacteriol189:2637–2645 [CrossRef][PubMed]
    [Google Scholar]
  5. Bongiorni C., Fukushima T., Wilson A. C., Chiang C., Mansilla M. C., Hoch J. A., Perego M.. 2008; Dual promoters control expression of the Bacillus anthracis virulence factor AtxA. J Bacteriol190:6483–6492 [CrossRef][PubMed]
    [Google Scholar]
  6. Brunsing R. L., La Clair C., Tang S., Chiang C., Hancock L. E., Perego M., Hoch J. A.. 2005; Characterization of sporulation histidine kinases of Bacillus anthracis. J Bacteriol187:6972–6981 [CrossRef][PubMed]
    [Google Scholar]
  7. Château A., van Schaik W., Six A., Aucher W., Fouet A.. 2011; CodY regulation is required for full virulence and heme iron acquisition in Bacillus anthracis. FASEB J25:4445–4456 [CrossRef][PubMed]
    [Google Scholar]
  8. Chiang C., Bongiorni C., Perego M.. 2011; Glucose-dependent activation of Bacillus anthracis toxin gene expression and virulence requires the carbon catabolite protein CcpA. J Bacteriol193:52–62 [CrossRef][PubMed]
    [Google Scholar]
  9. Cybulski R. J. Jr., Sanz P., Alem F., Stibitz S., Bull R. L., O'Brien A. D.. 2009; Four superoxide dismutases contribute to Bacillus anthracis virulence and provide spores with redundant protection from oxidative stress. Infect Immun77:274–285 [CrossRef][PubMed]
    [Google Scholar]
  10. Dai Z., Sirard J. C., Mock M., Koehler T. M.. 1995; The atxA gene product activates transcription of the anthrax toxin genes and is essential for virulence. Mol Microbiol16:1171–1181 [CrossRef][PubMed]
    [Google Scholar]
  11. Dale J. L., Raynor M. J., Dwivedi P., Koehler T. M.. 2012; cis-Acting elements that control expression of the master virulence regulatory gene atxA in Bacillus anthracis. J Bacteriol194:4069–4079 [CrossRef][PubMed]
    [Google Scholar]
  12. Dhiman A., Bhatnagar S., Kulshreshtha P., Bhatnagar R.. 2014; Functional characterization of WalRK: a two-component signal transduction system from Bacillus anthracis. FEBS Open Bio4:65–76 [CrossRef][PubMed]
    [Google Scholar]
  13. Dhiman A., Gopalani M., Bhatnagar R.. 2015; WalRK two component system of Bacillus anthracis responds to temperature and antibiotic stress. Biochem Biophys Res Commun459:623–628 [CrossRef][PubMed]
    [Google Scholar]
  14. Dixon T. C., Meselson M., Guillemin J., Hanna P. C.. 1999; Anthrax. N Engl J Med341:815–826 [CrossRef][PubMed]
    [Google Scholar]
  15. Drysdale M., Bourgogne A., Hilsenbeck S. G., Koehler T. M.. 2004; atxA controls Bacillus anthracis capsule synthesis via acpA and a newly discovered regulator, acpB. J Bacteriol186:307–315 [CrossRef][PubMed]
    [Google Scholar]
  16. Drysdale M., Bourgogne A., Koehler T. M.. 2005; Transcriptional analysis of the Bacillus anthracis capsule regulators. J Bacteriol187:5108–5114 [CrossRef][PubMed]
    [Google Scholar]
  17. Fouet A., Namy O., Lambert G.. 2000; Characterization of the operon encoding the alternative sigmaB factor from Bacillus anthracis and its role in virulence. J Bacteriol182:5036–5045 [CrossRef][PubMed]
    [Google Scholar]
  18. Hadjifrangiskou M., Chen Y., Koehler T. M.. 2007; The alternative sigma factor sigmaH is required for toxin gene expression by Bacillus anthracis. J Bacteriol189:1874–1883 [CrossRef][PubMed]
    [Google Scholar]
  19. Hammerstrom T. G., Roh J. H., Nikonowicz E. P., Koehler T. M.. 2011; Bacillus anthracis virulence regulator AtxA: oligomeric state, function and CO2-signalling. Mol Microbiol82:634–647 [CrossRef][PubMed]
    [Google Scholar]
  20. Hammerstrom T. G., Horton L. B., Swick M. C., Joachimiak A., Osipiuk J., Koehler T. M.. 2015; Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity. Mol Microbiol95:426–441 [CrossRef][PubMed]
    [Google Scholar]
  21. Han H., Wilson A. C.. 2013; The two CcdA proteins of Bacillus anthracis differentially affect virulence gene expression and sporulation. J Bacteriol195:5242–5249 [CrossRef][PubMed]
    [Google Scholar]
  22. Howell A., Dubrac S., Andersen K. K., Noone D., Fert J., Msadek T., Devine K.. 2003; Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach. Mol Microbiol49:1639–1655 [CrossRef][PubMed]
    [Google Scholar]
  23. Huang W. Z., Wang J. J., Chen H. J., Chen J. T., Shaw G. C.. 2013; The heat-inducible essential response regulator WalR positively regulates transcription of sigI, mreBH and lytE in Bacillus subtilis under heat stress. Res Microbiol164:998–1008 [CrossRef][PubMed]
    [Google Scholar]
  24. Janes B. K., Stibitz S.. 2006; Routine markerless gene replacement in Bacillus anthracis. Infect Immun74:1949–1953 [CrossRef][PubMed]
    [Google Scholar]
  25. Koehler T. M.. 2009; Bacillus anthracis physiology and genetics. Mol Aspects Med30:386–396 [CrossRef][PubMed]
    [Google Scholar]
  26. Koehler T. M., Dai Z., Kaufman-Yarbray M.. 1994; Regulation of the Bacillus anthracis protective antigen gene: CO2 and a trans-acting element activate transcription from one of two promoters. J Bacteriol176:586–595[PubMed]
    [Google Scholar]
  27. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Okinaka R., Cloud K., Hampton O., Hoffmaster A., Hill K., Keim P., Koehler T., Lamke G., Kumano S., other authors. 1999a; Sequence, assembly and analysis of pX01 and pX02. J Appl Microbiol87:261–262 [CrossRef][PubMed]
    [Google Scholar]
  29. Okinaka R. T., Cloud K., Hampton O., Hoffmaster A. R., Hill K. K., Keim P., Koehler T. M., Lamke G., Kumano S., other authors. 1999b; Sequence and organization of pXO1, the large Bacillus anthracisplasmid harboring the anthrax toxin genes. J Bacteriol181:6509–6515[PubMed]
    [Google Scholar]
  30. Paget M. S.. 2015; Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules5:1245–1265 [CrossRef][PubMed]
    [Google Scholar]
  31. Passalacqua K. D., Varadarajan A., Ondov B. D., Okou D. T., Zwick M. E., Bergman N. H.. 2009; Structure and complexity of a bacterial transcriptome. J Bacteriol191:3203–3211 [CrossRef][PubMed]
    [Google Scholar]
  32. Poyart C., Trieu-Cuot P.. 1997; A broad-host-range mobilizable shuttle vector for the construction of transcriptional fusions to beta-galactosidase in Gram-positive bacteria. FEMS Microbiol Lett156:193–198 [CrossRef][PubMed]
    [Google Scholar]
  33. Ross C. L., Thomason K. S., Koehler T. M.. 2009; An extracytoplasmic function sigma factor controls beta-lactamase gene expression in Bacillus anthracis and other Bacillus cereus group species. J Bacteriol191:6683–6693 [CrossRef][PubMed]
    [Google Scholar]
  34. Saile E., Koehler T. M.. 2002; Control of anthrax toxin gene expression by the transition state regulator abrB. J Bacteriol184:370–380 [CrossRef][PubMed]
    [Google Scholar]
  35. Saile E., Koehler T. M.. 2006; Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants. Appl Environ Microbiol72:3168–3174 [CrossRef][PubMed]
    [Google Scholar]
  36. Salzberg L. I., Powell L., Hokamp K., Botella E., Noone D., Devine K. M.. 2013; The WalRK (YycFG) and σI RsgI regulators cooperate to control CwlO and LytE expression in exponentially growing and stressed Bacillus subtilis cells. Mol Microbiol87:180–195 [CrossRef][PubMed]
    [Google Scholar]
  37. Sambrook J., Russell D. W.. 2001; Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Schmidt T. R., Scott E. J. II, Dyer D. W.. 2011; Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group. BMC Genomics12:430 [CrossRef][PubMed]
    [Google Scholar]
  39. Schumann W.. 2003; The Bacillus subtilis heat shock stimulon. Cell Stress Chaperones8:207–217 [CrossRef][PubMed]
    [Google Scholar]
  40. Sirard J. C., Mock M., Fouet A.. 1994; The three Bacillus anthracis toxin genes are coordinately regulated by bicarbonate and temperature. J Bacteriol176:5188–5192[PubMed]
    [Google Scholar]
  41. Tseng C. L., Shaw G. C.. 2008; Genetic evidence for the actin homolog gene mreBH and the bacitracin resistance gene bcrC as targets of the alternative sigma factor SigI of Bacillus subtilis. J Bacteriol190:1561–1567 [CrossRef][PubMed]
    [Google Scholar]
  42. Tseng C. L., Chen J. T., Lin J. H., Huang W. Z., Shaw G. C.. 2011; Genetic evidence for involvement of the alternative sigma factor SigI in controlling expression of the cell wall hydrolase gene lytE and contribution of LytE to heat survival of Bacillus subtilis. Arch Microbiol193:677–685 [CrossRef][PubMed]
    [Google Scholar]
  43. Tsvetanova B., Wilson A. C., Bongiorni C., Chiang C., Hoch J. A., Perego M.. 2007; Opposing effects of histidine phosphorylation regulate the AtxA virulence transcription factor in Bacillus anthracis. Mol Microbiol63:644–655 [CrossRef][PubMed]
    [Google Scholar]
  44. Uchida I., Hornung J. M., Thorne C. B., Klimpel K. R., Leppla S. H.. 1993; Cloning and characterization of a gene whose product is a trans-activator of anthrax toxin synthesis. J Bacteriol175:5329–5338[PubMed]
    [Google Scholar]
  45. Vietri N. J., Marrero R., Hoover T. A., Welkos S. L.. 1995; Identification and characterization of a trans-activator involved in the regulation of encapsulation by Bacillus anthracis. Gene152:1–9 [CrossRef][PubMed]
    [Google Scholar]
  46. Wilson A. C., Tan M.. 2002; Functional analysis of the heat shock regulator HrcA of Chlamydia trachomatis. J Bacteriol184:6566–6571 [CrossRef][PubMed]
    [Google Scholar]
  47. Wilson A. C., Hoch J. A., Perego M.. 2008; Virulence gene expression is independent of ResDE-regulated respiration control in Bacillus anthracis. J Bacteriol190:5522–5525 [CrossRef][PubMed]
    [Google Scholar]
  48. Wilson A. C., Hoch J. A., Perego M.. 2009; Two small c-type cytochromes affect virulence gene expression in Bacillus anthracis. Mol Microbiol72:109–123 [CrossRef][PubMed]
    [Google Scholar]
  49. Wörner K., Szurmant H., Chiang C., Hoch J. A.. 2006; Phosphorylation and functional analysis of the sporulation initiation factor Spo0A from Clostridium botulinum. Mol Microbiol59:1000–1012 [CrossRef][PubMed]
    [Google Scholar]
  50. Zuber U., Drzewiecki K., Hecker M.. 2001; Putative sigma factor SigI (YkoZ) of Bacillus subtilis is induced by heat shock. J Bacteriol183:1472–1475 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000236
Loading
/content/journal/micro/10.1099/mic.0.000236
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error