1887

Abstract

The pathogenesis of depends on several virulence factors, including the anthrax toxin. Loss of the alternative sigma factor σ results in a coordinate decrease in expression of all three toxin subunits. Our observations suggest that loss of σ alters the activity of the master virulence regulator AtxA, but transcription is unaffected by loss of σ. σ-containing RNA polymerase does not appear to directly transcribe either or the toxin gene . As in , loss of σ in results in increased sensitivity to heat shock and transcription of , encoding σ, is induced by elevated temperature. Encoded immediately downstream of and part of a bicistronic message with is an anti-sigma factor, RsgI, which controls σ activity. Loss of RsgI has no direct effect on virulence gene expression. appears to be expressed from both the σ and σ promoters, and transcription from the σ promoter is likely more significant to virulence regulation. We propose a model in which σ can be induced in response to heat shock, whilst, independently, σ is produced under non-heat-shock, toxin-inducing conditions to indirectly regulate virulence gene expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000236
2016-03-01
2021-07-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/3/564.html?itemId=/content/journal/micro/10.1099/mic.0.000236&mimeType=html&fmt=ahah

References

  1. Asai K., Ootsuji T., Obata K., Matsumoto T., Fujita Y., Sadaie Y. 2007; Regulatory role of RsgI in sigI expression in Bacillus subtilis . Microbiology 153:92–101 [View Article][PubMed]
    [Google Scholar]
  2. Bartkus J. M., Leppla S. H. 1989; Transcriptional regulation of the protective antigen gene of Bacillus anthracis . Infect Immun 57:2295–2300[PubMed]
    [Google Scholar]
  3. Biller S. J., Burkholder W. F. 2009; The Bacillus subtilis SftA (YtpS) and SpoIIIE DNA translocases play distinct roles in growing cells to ensure faithful chromosome partitioning. Mol Microbiol 74:790–809 [View Article][PubMed]
    [Google Scholar]
  4. Bongiorni C., Stoessel R., Perego M. 2007; Negative regulation of Bacillus anthracis sporulation by the Spo0E family of phosphatases. J Bacteriol 189:2637–2645 [View Article][PubMed]
    [Google Scholar]
  5. Bongiorni C., Fukushima T., Wilson A. C., Chiang C., Mansilla M. C., Hoch J. A., Perego M. 2008; Dual promoters control expression of the Bacillus anthracis virulence factor AtxA. J Bacteriol 190:6483–6492 [View Article][PubMed]
    [Google Scholar]
  6. Brunsing R. L., La Clair C., Tang S., Chiang C., Hancock L. E., Perego M., Hoch J. A. 2005; Characterization of sporulation histidine kinases of Bacillus anthracis . J Bacteriol 187:6972–6981 [View Article][PubMed]
    [Google Scholar]
  7. Château A., van Schaik W., Six A., Aucher W., Fouet A. 2011; CodY regulation is required for full virulence and heme iron acquisition in Bacillus anthracis . FASEB J 25:4445–4456 [View Article][PubMed]
    [Google Scholar]
  8. Chiang C., Bongiorni C., Perego M. 2011; Glucose-dependent activation of Bacillus anthracis toxin gene expression and virulence requires the carbon catabolite protein CcpA. J Bacteriol 193:52–62 [View Article][PubMed]
    [Google Scholar]
  9. Cybulski R. J. Jr., Sanz P., Alem F., Stibitz S., Bull R. L., O'Brien A. D. 2009; Four superoxide dismutases contribute to Bacillus anthracis virulence and provide spores with redundant protection from oxidative stress. Infect Immun 77:274–285 [View Article][PubMed]
    [Google Scholar]
  10. Dai Z., Sirard J. C., Mock M., Koehler T. M. 1995; The atxA gene product activates transcription of the anthrax toxin genes and is essential for virulence. Mol Microbiol 16:1171–1181 [View Article][PubMed]
    [Google Scholar]
  11. Dale J. L., Raynor M. J., Dwivedi P., Koehler T. M. 2012; cis-Acting elements that control expression of the master virulence regulatory gene atxA in Bacillus anthracis . J Bacteriol 194:4069–4079 [View Article][PubMed]
    [Google Scholar]
  12. Dhiman A., Bhatnagar S., Kulshreshtha P., Bhatnagar R. 2014; Functional characterization of WalRK: a two-component signal transduction system from Bacillus anthracis . FEBS Open Bio 4:65–76 [View Article][PubMed]
    [Google Scholar]
  13. Dhiman A., Gopalani M., Bhatnagar R. 2015; WalRK two component system of Bacillus anthracis responds to temperature and antibiotic stress. Biochem Biophys Res Commun 459:623–628 [View Article][PubMed]
    [Google Scholar]
  14. Dixon T. C., Meselson M., Guillemin J., Hanna P. C. 1999; Anthrax. N Engl J Med 341:815–826 [View Article][PubMed]
    [Google Scholar]
  15. Drysdale M., Bourgogne A., Hilsenbeck S. G., Koehler T. M. 2004; atxA controls Bacillus anthracis capsule synthesis via acpA and a newly discovered regulator, acpB. J Bacteriol 186:307–315 [View Article][PubMed]
    [Google Scholar]
  16. Drysdale M., Bourgogne A., Koehler T. M. 2005; Transcriptional analysis of the Bacillus anthracis capsule regulators. J Bacteriol 187:5108–5114 [View Article][PubMed]
    [Google Scholar]
  17. Fouet A., Namy O., Lambert G. 2000; Characterization of the operon encoding the alternative sigmaB factor from Bacillus anthracis and its role in virulence. J Bacteriol 182:5036–5045 [View Article][PubMed]
    [Google Scholar]
  18. Hadjifrangiskou M., Chen Y., Koehler T. M. 2007; The alternative sigma factor sigmaH is required for toxin gene expression by Bacillus anthracis . J Bacteriol 189:1874–1883 [View Article][PubMed]
    [Google Scholar]
  19. Hammerstrom T. G., Roh J. H., Nikonowicz E. P., Koehler T. M. 2011; Bacillus anthracis virulence regulator AtxA: oligomeric state, function and CO2-signalling. Mol Microbiol 82:634–647 [View Article][PubMed]
    [Google Scholar]
  20. Hammerstrom T. G., Horton L. B., Swick M. C., Joachimiak A., Osipiuk J., Koehler T. M. 2015; Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity. Mol Microbiol 95:426–441 [View Article][PubMed]
    [Google Scholar]
  21. Han H., Wilson A. C. 2013; The two CcdA proteins of Bacillus anthracis differentially affect virulence gene expression and sporulation. J Bacteriol 195:5242–5249 [View Article][PubMed]
    [Google Scholar]
  22. Howell A., Dubrac S., Andersen K. K., Noone D., Fert J., Msadek T., Devine K. 2003; Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach. Mol Microbiol 49:1639–1655 [View Article][PubMed]
    [Google Scholar]
  23. Huang W. Z., Wang J. J., Chen H. J., Chen J. T., Shaw G. C. 2013; The heat-inducible essential response regulator WalR positively regulates transcription of sigI, mreBH and lytE in Bacillus subtilis under heat stress. Res Microbiol 164:998–1008 [View Article][PubMed]
    [Google Scholar]
  24. Janes B. K., Stibitz S. 2006; Routine markerless gene replacement in Bacillus anthracis . Infect Immun 74:1949–1953 [View Article][PubMed]
    [Google Scholar]
  25. Koehler T. M. 2009; Bacillus anthracis physiology and genetics. Mol Aspects Med 30:386–396 [View Article][PubMed]
    [Google Scholar]
  26. Koehler T. M., Dai Z., Kaufman-Yarbray M. 1994; Regulation of the Bacillus anthracis protective antigen gene: CO2 and a trans-acting element activate transcription from one of two promoters. J Bacteriol 176:586–595[PubMed]
    [Google Scholar]
  27. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Okinaka R., Cloud K., Hampton O., Hoffmaster A., Hill K., Keim P., Koehler T., Lamke G., Kumano S., other authors. 1999a; Sequence, assembly and analysis of pX01 and pX02. J Appl Microbiol 87:261–262 [View Article][PubMed]
    [Google Scholar]
  29. Okinaka R. T., Cloud K., Hampton O., Hoffmaster A. R., Hill K. K., Keim P., Koehler T. M., Lamke G., Kumano S., other authors. 1999b; Sequence and organization of pXO1, the large Bacillus anthracisplasmid harboring the anthrax toxin genes. J Bacteriol 181:6509–6515[PubMed]
    [Google Scholar]
  30. Paget M. S. 2015; Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules 5:1245–1265 [View Article][PubMed]
    [Google Scholar]
  31. Passalacqua K. D., Varadarajan A., Ondov B. D., Okou D. T., Zwick M. E., Bergman N. H. 2009; Structure and complexity of a bacterial transcriptome. J Bacteriol 191:3203–3211 [View Article][PubMed]
    [Google Scholar]
  32. Poyart C., Trieu-Cuot P. 1997; A broad-host-range mobilizable shuttle vector for the construction of transcriptional fusions to beta-galactosidase in Gram-positive bacteria. FEMS Microbiol Lett 156:193–198 [View Article][PubMed]
    [Google Scholar]
  33. Ross C. L., Thomason K. S., Koehler T. M. 2009; An extracytoplasmic function sigma factor controls beta-lactamase gene expression in Bacillus anthracis and other Bacillus cereus group species. J Bacteriol 191:6683–6693 [View Article][PubMed]
    [Google Scholar]
  34. Saile E., Koehler T. M. 2002; Control of anthrax toxin gene expression by the transition state regulator abrB . J Bacteriol 184:370–380 [View Article][PubMed]
    [Google Scholar]
  35. Saile E., Koehler T. M. 2006; Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants. Appl Environ Microbiol 72:3168–3174 [View Article][PubMed]
    [Google Scholar]
  36. Salzberg L. I., Powell L., Hokamp K., Botella E., Noone D., Devine K. M. 2013; The WalRK (YycFG) and σI RsgI regulators cooperate to control CwlO and LytE expression in exponentially growing and stressed Bacillus subtilis cells. Mol Microbiol 87:180–195 [View Article][PubMed]
    [Google Scholar]
  37. Sambrook J., Russell D. W. 2001 Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Schmidt T. R., Scott E. J. II, Dyer D. W. 2011; Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group. BMC Genomics 12:430 [View Article][PubMed]
    [Google Scholar]
  39. Schumann W. 2003; The Bacillus subtilis heat shock stimulon. Cell Stress Chaperones 8:207–217 [View Article][PubMed]
    [Google Scholar]
  40. Sirard J. C., Mock M., Fouet A. 1994; The three Bacillus anthracis toxin genes are coordinately regulated by bicarbonate and temperature. J Bacteriol 176:5188–5192[PubMed]
    [Google Scholar]
  41. Tseng C. L., Shaw G. C. 2008; Genetic evidence for the actin homolog gene mreBH and the bacitracin resistance gene bcrC as targets of the alternative sigma factor SigI of Bacillus subtilis . J Bacteriol 190:1561–1567 [View Article][PubMed]
    [Google Scholar]
  42. Tseng C. L., Chen J. T., Lin J. H., Huang W. Z., Shaw G. C. 2011; Genetic evidence for involvement of the alternative sigma factor SigI in controlling expression of the cell wall hydrolase gene lytE and contribution of LytE to heat survival of Bacillus subtilis . Arch Microbiol 193:677–685 [View Article][PubMed]
    [Google Scholar]
  43. Tsvetanova B., Wilson A. C., Bongiorni C., Chiang C., Hoch J. A., Perego M. 2007; Opposing effects of histidine phosphorylation regulate the AtxA virulence transcription factor in Bacillus anthracis . Mol Microbiol 63:644–655 [View Article][PubMed]
    [Google Scholar]
  44. Uchida I., Hornung J. M., Thorne C. B., Klimpel K. R., Leppla S. H. 1993; Cloning and characterization of a gene whose product is a trans-activator of anthrax toxin synthesis. J Bacteriol 175:5329–5338[PubMed]
    [Google Scholar]
  45. Vietri N. J., Marrero R., Hoover T. A., Welkos S. L. 1995; Identification and characterization of a trans-activator involved in the regulation of encapsulation by Bacillus anthracis . Gene 152:1–9 [View Article][PubMed]
    [Google Scholar]
  46. Wilson A. C., Tan M. 2002; Functional analysis of the heat shock regulator HrcA of Chlamydia trachomatis . J Bacteriol 184:6566–6571 [View Article][PubMed]
    [Google Scholar]
  47. Wilson A. C., Hoch J. A., Perego M. 2008; Virulence gene expression is independent of ResDE-regulated respiration control in Bacillus anthracis . J Bacteriol 190:5522–5525 [View Article][PubMed]
    [Google Scholar]
  48. Wilson A. C., Hoch J. A., Perego M. 2009; Two small c-type cytochromes affect virulence gene expression in Bacillus anthracis . Mol Microbiol 72:109–123 [View Article][PubMed]
    [Google Scholar]
  49. Wörner K., Szurmant H., Chiang C., Hoch J. A. 2006; Phosphorylation and functional analysis of the sporulation initiation factor Spo0A from Clostridium botulinum . Mol Microbiol 59:1000–1012 [View Article][PubMed]
    [Google Scholar]
  50. Zuber U., Drzewiecki K., Hecker M. 2001; Putative sigma factor SigI (YkoZ) of Bacillus subtilis is induced by heat shock. J Bacteriol 183:1472–1475 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000236
Loading
/content/journal/micro/10.1099/mic.0.000236
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error